
JiABO ATOR FOR ASSACI iUSEI'S
L.1 R AO RYFO RINSTITUrfh:OF

-,~ P SCIENCE TECHNOLOGY.

*MIT/LCS/TR-439

.- rERIFYING OBJECf-T.ORIEN7 IED
PROGRAMS THAT USE.

SUBTYPES

Gary Todd Leavens

February 1989

545 EC - QARE CA BRIGEMASSA(71UsETi> 0211,)

Jjo a g i
ipl

Unclass ified

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb RESTRICTIVE MARKINGS

Unclassified
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release; distribution
is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

MIT/LCS/TR-439 N00014-83-K-0125

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
MIT Laboratory for Computer (If applicable) Office of Naval Research/Department of Navy

Science I
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS(City, State, and ZIP Code)

545 Technology Square Information Systems Program

Cambridge, MA 02139 Arlington, VA 22217

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

DARPA/DOD I
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

1400 Wilson Blvd. PROGRAM PROJECT TASK WORK UNIT
Arlington, VA 22217 ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)
Verifying Object-Oriented Programs that use Subtypes

12. PERSONAL AUTHOR(S)
Leavens, Gary Todd

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15 PAF COUNT
Technical FROM TO 1989 February U8

16. SUPPLEMENTARY NOTATION

17. COSATI CODES 18. SUBJECT1-ERMS (Continue on reverse if necessary and identify by block number)
FIELD GROUP SUB-GROUP - programming languages, object-oriented, Smalltalk, speci-

fication, subtype, type checking, abstract type, generic

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

'- Object-oriented programming languages like Smalltalk-80 have a generic invocation

mechanism that allows code to work on instances of many different types. In this

dissertation we show how to write formal specifications of functions that use generic
invocation and give a logic for verifying applicative programs that use generic invoca-

tion.
Our reasoning techniques formalize informal methods based on the use of subtypes. We

give a formal definition of subtype relationships among immutable abstract types, includin

nondeterministic and incompletely specified types. This definition captures the intuition
that each instance of a subtype behaves like some instance of that type's supertypes. We
show how to write specifications of functions that use generic invocation by allowing
instances of subtypes as arguments. We also simplify verification by separately checking

that each expression's value is an instance of a subtype of the expression's type.,,

20 DISTRIBUTION /AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[9 UNCLASSIFIEDIUNLIMITED 0 SAME AS RPT. 0 DTIC USERS Unclassified

22a NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL

Judy Little. Publications Coordinator (617) 253-5894

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted. SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete

*4LL. Gmui.t ItbIW Offk.: 1m8-4074M

Unclassified

89 6 15

Verifying Object-Oriented Programs

that use Subtypes

by

Gary Todd Leavens

December 1988

(Massachusetts Institute of Technology, 1988. All rights reserved.

This work was supported by the Defense Advanced Research
Projects Agency (DARPA) under Grant N00014-83-K-0125.

Massachusetts Institute of Technology

Laboratory for Computer Science

Cambridge, Massachusetts 02139

2

To Janet,
who brought the spring that ended my coldest winter,
and whose summer sunshine adds happiness to my life.

Verifying Object-Oriented Programs
that use Subtypes

by

Gary Todd Leavens

Submitted to the Department of
Electrical Engineering and Computer Science on December 21, 1988

in partial fulfillment of the requirements for the degree of

Doctor of Philosophy in Computer Science

Abstract

Object-oriented programming languages like Smalltalk-80 have a generic invocation

mechanism that allows code to work on instances of many different types. In this

dissertation we show how to write formal specifications of functions that use generic

invocation and give a logic for verifying applicative programs that use generic invoca-

tion.

Our reasoning techniques formalize informal methods based on the use of subtypes.

We give a formal definition of subtype relationships among immutable abstract types,

including nondeterministic and incompletely specified types. This definition captures

the intuition that each instance of a subtype behaves like some instance of that type's

supertypes. We show how to write specifications of functions that use generic invo-

cation by allowing instances of subtypes as arguments. We also simplify verification

by separately checking that each expression's value is an instance of a subtype of the

expression's type.

Thesis Supervisor: William E. Weihl
Title: Associate Professor of Computer Science

Keywords: programming languages, object-oriented, Smalltalk, specification, ver-

ification, subtype, type checking, abstract type, generic invocation, message passing,

inclusion polymorphism.

1987 CR Categories: D.2.1 [Software Engineering] Requirements/Specifications -

Languages; D.2.4 [Software Engineering] Program Verification - Correctness proofs;

D.3.3 [Programming Languages] Language Constructs - Abstract data types, proce-

dures, functions, and subroutines; F.3.1 [Logics and Meanings of Programs] Specifying

and verifying and reasoning about programs - logics of programs, pre- and post-

conditions, specification techniques.

3

List of Figures

1.1 Example of generic invocation 12
1.2 Implementation of the function sumFirst in Trellis/Owl 13
1.3 Implementation of the function sumFirst in ML 14
1.4 Specification of the function sumFirst 15

2.1 An algebra B for the Booleans 26
2.2 The type specification IPT, containing IntPair and IntTriple 29
2.3 The trait ThreeSeq that describes the abstract values of IntTriple. ... 30
2.4 Syntax of Specifications 31
2.5 An IPT-algebra, A 38
2.6 Specification of the nondeterministic scheduler type Mob 39
2.7 The trait OneOf[normal: hat, empty: Null] 40
2.8 Specification of the type Mob2 41
2.9 Desugared form of an exception specification 41

3.1 Syntax of NOAL 46
3.2 Type Inference Rules for NOAL 54

4.1 The function specification is2waiting 62
4.2 Specification of the priority scheduler type, PSchd 63
4.3 The trait OrderedSet 64
4.4 Specification of the function ins3, which inserts 3 in a scheduler..... ... 71

5.1 Specification of the deterministic scheduler type Crowd 81
5.2 Subtype relationships among the scheduler types 82
5.3 Specification of the type PSchd2, which is more defined than PSchd. ... 93
5.4 Specification of the scheduler type Mob3 95
5.5 Specification of the type NE = OneOfinormal: Int, empty: Null] 96
5.6 The specification Vehicles, including types Vehicle and Bicycle..... ... 98
5.7 The trait Vehicle that describes the abstract values of Vehicle 99

6.1 The T12-algebra, A 123
6.2 Specification of the type 012 = OneOf[n : S1, n2 : S2 1 132

7.1 Axiom Schemes for verification of NOAL Expressions 142
7.2 Inference rules for verification of NOAL expressions 143

B.1 Model of the visible type Int 186
B.2 Model of the visible type IntStream 188

C.1 Strong monotonicity of < 196

4

Accession For

NTIS GRA&I
DTIC TAB 51
Unannounced 5
Justifraation

By
Distribution/

Availability Codes Contents
Dit Special

Biographical Note 8

Acknowledgments 9

1 Introduction 11
1.1 Generic Invocation 11
1.2 Inclusion Polymorphism 13
1.3 Specification and Verification Problems 15
1.4 Overview of Our Solution 16
1.5 Plan of the Dissertation 18

2 Algebraic Models of Type Specifications 21
2.1 Algebras 21
2.2 Type Specifications 27

2.2.1 Type Specification Syntax 28
2.2.2 Syntactic Interfaces of Type Specifications 30
2.2.3 Satisfaction for Type Specifications 34

2.3 Specifying Nondeterministic Types 37
2.4 Specifying Types with Exceptions 39

3 Observations by an Applicative Language 43
3.1 Observations 43
3.2 The Programming Language NOAL 45
3.3 NOAL Syntax 46
3.4 Generic Invocation in NOAL. 47
3.5 NOAL Semantics 48

3.5.1 Semantics of NOAL Expressions 48
3.5.2 Semantics of Recursive Function Definitions 50
3.5.3 Semantics of NOAL Programs 51

3.6 Nominal Types and Type Checking for NOAL 52

4 Specifying Polymorphic Functions 61
4.1 Syntax of Function Specifications 62
4.2 Evaluation of Assertions 64

4.2.1 The Imitates Relation 65
4.2.2 Models of Assertions 67

4.3 Semantics of Polymorphic Function Specifications 68
4.4 D iscussion . 70

4.4.1 Limitations of Our Techniques for Evaluating Assertions 70
4.4.2 Polymorphic Operation Specifications 71
4.4.3 Plausibility of Our Semantics for Specifications 72

5

6

5 Subtype Relations 77
5.1 Definition of Subtype Relations 78

5.1.1 Subtypes can be More Deterministic 79
5.1.2 Incompletely Specified Supertypes 81

5.2 Reasoning about Environments that obey a Subtype Relation 84
5.3 Discussion 89

5.3.1 How Subtyping Varies with Observations 90
5.3.2 Testing Functions that use Subtypes 90
5.3.3 Subtypes can have Weaker Requirements 92
5.3.4 Exceptions and Subtyping 93
5.3.5 Virtual Supertypes 97

5.4 Other Definitions of Subtype 99
5.4.1 Informal Definitions of Subtype Relationships 100
5.4.2 Cardelli's "Semantics of Multiple Inheritance" 101
5.4.3 Bruce and Wegner's Definition of Subtyping 102

6 Simulation Relations 105
6.1 Definition of Simulation Relations 108
6.2 Simulation as a Criterion for Imitation 113

6.2.1 The Substitution Property for NOAL Expressions 114
6.2.2 The Substitution Property for NOAL Programs 117

6.3 Proving Subtype Relations using Simulation Relations 119
6.3.1 Modularity in Proofs of Subtype Relations 120
6.3.2 Using Universal Models in Proving Subtype Relations 125

6.4 Examples Proofs of Sibtype Relations 128
6.4.1 Schedulers 128
6.4.2 OneOfs 131
6.4.3 Exceptions 136

7 Hoare-style Verification for NOAL Programs 139
7.1 A Hoare Logic for NOAL 140
7.2 NOAL Program Verification 149
7.3 Soundness of Hoare-style Verification for NOAL 153
7.4 How a Type System can Aid Verification 164

7.4.1 Obedience in NOAL 164
7.4.2 Verification in Trellis/Owl 165
7.4.3 Verification in Emerald 166
7.4.4 Verification in Smalltalk-80 166

7.5 Observable Assertions and Reasoning 168

8 Discussion 171
8.1 Simulation in Other Programming Languages 171
8.2 Extensions Needed for Practical Applications 172
8.3 Future Work .. 172

8.3.1 Future Work on Specification. 173
8.3.2 Future Work on Verification 173
8.3.3 Future Work on Language Design 174

9 Summary and Conclusions 175
9.1 Summary of Results 175
9.2 Conclusions for Programmers 176
9.3 Conclusions for Language Designers 177

9.3.1 Languages Should Have Declared Subtype Relations 177
9.3.2 TypeOf Operators Cause Problems for Reasoning 178

A Summary of Notation 179

7

B Visible Types and Streams 185

* Recursively-Defined NOAL Functions 189
C.1 Semantics of NOAL Functions 189

C.1.1 Domains and Domain Orderings 189
C.1.2 Semantics of Recursive Functions in NOAL 191

C.2 The Substitution Propercy for NOAL Functions 195

References 205

Biographical Note

Gary Leavens was born in Royal Oak, Michigan in November 1957 to Neil and Burnis
Leavens. He had happy childhood in Royal Oak, where he was graduated from Kimball
High School in June, 1975. He attended the University of Michigan, in Ann Arbor, where
he received a Bachelor of Science degree in December 1978, with High Distinction and
Honors in Computer and Communication Sciences. Having finished a term early, he
enrolled in the graduate school at the University of Michigan, where he stayed for one
more term.

In May 1979 Gary started work as a member of technical staff for Bell Telephone
Laboratories in Denver, Colorado. At Bell Laboratories he worked on the development
and maintenance of a large software management system. As part of the One Year on
Campus program of Bell Laboratories, he attended the University of Southern California
in Los Angeles, California from September 1979 until June 1980, when he received a
Master of Science degree in Computer Science.

In September 1982 Gary enrolled at the Massachusetts Institute of Technology. At
MIT he received a GenRad/AEA faculty development fellowship. He was a teaching
assistant for several graduate and undergraduate courses and was active in the design
and implementation of the Argus distributed programming language and system. He is
a coauthor and the editor of the Argus Reference Manual.

Starting in January 1989, Gary will be an assistant professor of computer science at
the Iowa State University of Science and Technology, in Ames, Iowa.

8

Acknowledgements

My deepest thanks go to Bill Weihl, who not only helped me develop my ideas, but

who is also an excellent reader and critic, and a good friend. Barbara Liskov was also

instrumental in developing and organizing my ideas and she encouraged me to pursue

the topic of subtyping. Barbara also provided much of my financial support during

graduate school, and she always shows me that she believes in me and my work. John

Guttag provided technical expertise, encouragement, and a dedication to clear writing

and thinking. These three formed my dissertation committee.

Many others also contributed to the development of my ideas. Toby Bloom helped

me develop my topic and was involved in many discussions. Bob Scheifler was always

excellent in his constructive criticisms. Craig Schaffert provided critical comments, exam-

ples, and many discussions. Alan Snyder helped point out the importance of incomplete

specifications. Jeannette Wing helped by steering me to model theory. Dan Carnese and

Rich Zippel helped me understand existing object-oriented systems and programs. My

primary reference for nondeterministic algebras is an article by Tobias Nipkow, whom I

have had the good fortune to talk with in person during this past year. John Mitchell

took time for technical discussions, and his work on representation independence was an

inspiration for me. Others who helped by taking time for technical discussions and by

asking good questions were: Dave Gifford, Kathy Yelick, Suresh Jagannathan, Rishiyur

Nikhil, Val Breazu-Tannen, Albert Meyer, Jonathan Rees, Earl Waldin, Jon Riecke,

Lalita Jategaonkar, John Lucassen, Mark Reinhold, Brian Oki, Kim Bruce, and Peter

Wegner. There were also several professors at -,hools where I interviewed with whom I

had stimulating technical discussions, especially Laurette Bradley (at UCSD), Al Baker

and Jim Bieman (at Iowa State), and Chris Haynes and Dan Friedman (at Indiana). To

these that I have named, to all my teachers, and to those I have forgotten, my heartfelt

thanks.

9

10

Eo God and to all my friends and family, my thanks for more than I can say. My

parents and family have been a constant source of love and encouragement. In more

recent months my loving wife, Janet, has given me great joy and has supported me in

every way. My family and my friends, Brian Oki, Dane Krampitz, John Morrison, Bill

\Veihl, Susan and Michael Thomas, Rachael Rassmussen, Fred Reisz, Janet Shaffer, Paul

flauge, Angella Carmella, Brian and Dinah Dalder, and Andrew Xu were all instrumental

in helping me through the most difficult time of my life; they are truly friends indeed. I am

proud and happy to count many others as my friends, although I have not leaned on them

so heavily; these include Kathy Yelick, Minoru Kubota, Debbie Hwang, Elliot Kolodner,

Suresh Jagannathan, Robert Scheifler, Jon Riecke, Paul Hillner, David Jaeger, Sharon

Per]. Mark Day, Paul Johnson, Dorothy Curtis, Toby Bloom, Boaz Ben-Zvi, Sanjay

Ghemawat, Robert Gruber, Rivka Ladin, Barbara Liskov, John Guttag, Ann Rubin,

Liuba Shrira, Daniel Jackson, Tobias Nipkow, Arch Oldehoeft, Nancy Lynch, Albert

Meyer, Jennifier Welsh, Mike Vermeulen, Ed Walker, Jim Restivo, Randy Forgaard,

Maurice tHerlihy, Jeannette Wing, Sheng-Yang Chiu, David Beyer, Dick Schoenfeldt,

Radia Pearlman, Tony and Arelene Graves, Dan and Carole Sendek, Paul Borucki, and

many others at MIT that I do not have space to name.

I am grateful for the financial support of the MIT Laboratory for Computer Science

(through Professor Liskov) and for the GenRad Foundation for funding my GenRad/AEA

faculty development fellowship. Thanks also to Virginia Boynton for her support until

December 1987.

Chapter 1

Introduction

Object-oriented programming languages, such as Smalltalk-80 [GR83], provide program-

mers with powerful tools. One of these tools is a generic invocation (or message passing)

mechanism, which allows code to manipulate instances of different types. To reason

about programs that use generic invocation, programmers often classify types by how

instances of that type behave. If each instance of type S behaves like an instance of type

T, then S is called a subtype of T. Programmers hope that if their code works correctly

when it operates on instances of some type T, then their code will also work correctly

on instances of subtypes of T. However, since they lack the formal tools to guide their

classification of types and their reasoning, their reasoning lacks certainty.

In this dissertation, we take the following steps towards a foundation for reasoning

about programs that use generic invocation.

" We present a formal definition of subtyping among abstract types.

" We present formal techniques for specifying and verifying programs that use generic

invocation.

1.1 Generic Invocation

To explain generic invocation, we must first define a few terms. An abstract data type

is a description of a set of instances (or objects) and a set of operations that create and

manipulate them [LG86]. A class is a program module that implements an abstract

dao, type. A class defines a representation for instances and implements the various

operations of the abstract type with procedures. Each abstract data type has a name,

and we give a class the same name as the abstract type it implements. The names of

11

12

abstract types are the types used in type checking. Each object is an instance of the

class that created it, and thus an instance of the abstract type that the class implements.

Therefore each instance has one and only one class and type, and its class %nd type have

the same name. For example, an instance of type Text-Window would also be an instance

of the class named Text-Window.

The invocations of read-line(io) in the second and last lines of the Trellis/Owl

[SCB*86] [OBr85] [SCWS5] program of Figure 1.1 are generic invocations, because they

are syntactically identical and yet may result in the running of different procedures. In

the second line of the program, io denotes an instance of Text-Window, so the generic

invocation mechanism runs code that is part of the class Text-Window. In the last line

of the program, code from the class IOStream will be run if io denotes an instance of

IOStream, and otherwise the code from the class Text-Window will be run. Notice that

in the last line, the choice of what code to invoke cannot be made before the result of

the if expression is known.

Generic invocation is sometimes called message passing because one can think of

read-line(io) as sending the message "read-line" to the object denoted by io. In this

metaphor, a message is an operation symbol together with the remaining arguments.

Generic invocation can be thought of as a dynamic form of overloading, but it should

not be confused with static (i.e., compile-time) overloading, as found, for example, in Ada

[Ada83]. In an Ada program, both IOStream and Text-Window can have operations

named read-line. However, the procedure that is called by read-line(io) in Ada

depends statically on the type of the variable io instead of depending dynamically on

the type of the object bound to io. Since in Ada the same variable cannot refer to

Figure 1.1: Example of generic invocation.

var io: IOStream := create(TextWindow, ...);

ans: String : read-line(io);
io := if (ans "y")

then create(Text-Window, ...)

else create(IOStream, ...)

end if;
1: String := read-line(io)

13

instances of different types, syntactically different invocations would be needed to call

each of the two read-line operations.

Trellis/Owl, like Smalltalk-80, treats all invocations of operations that occur in a

program as generic invocations. An invocation such as create(Text_-Window,...) is a

generic invocation that takes the Text-Window class object and some other arguments

and returns an instance of Text-Window. (A class object is an object that represents

a type at run-time.) Since create takes a class object as an argument, it is a class

operation. Operations that do not take class objects as arguments, such as read-line,

are called instance operations.

1.2 Inclusion Polymorphism

By using generic invocation, one can write polymorphic procedures; that is, procedures

that can be applied to instances of different types. For example, the Trellis/Owl pro-

cedure sumFirst in Figure 1.2 is polymorphic. This polymorphism is exhibited by the

call,

sumFirst(make(IntPair,1,2), make(IntTriple,4,5,6)),

whose result is 5. IntPair is a type with a class operation make and instance operations

first and second. The type IntTriple also has an instance operation named first, as

well as a class operation make and instance operations second and third. Since we can

pass to sumFirst instances of either IntPair or IntTriple, sumFirst is polymorphic.

Cardelli and Wegner have coined the term inclusion polymorphism for the kind of

polymorphism exhibited by sumFirst [CW85, Page 475]. Unlike other kinds of polymor-

phism, inclusion polymorphism implicitly associates a set of named instance operations

with each object. For example, Trellis/Owl implicitly associates the instance operations

first and second with each instance of IntPair.

Figure 1.2: Implementation of the function sumFirst in Trellis/Owl.

proc sumFirst(pl,p2: IntPair) returns(Int)
return(add(first(pl) ,first(p2)))

end;

14

By contrast, consider writing sumFirst in a language with parametric polymorphism,

such as ML [GMW79]. In ML we would have to explicitly pass the operations that

extract the first components of the objects, because an object's instance operations are

not available at run-time in ML. (See Figure 1.3.) However, the ML version of sumFirst

is more general than the Trellis/Owl version, because the first two arguments do not have

to be instances of types that have operations named first.

Inclusion polymorphism has two main advantages.

First, programs may be more terse than in a language with parametric polymor-

phism, since instance operations are implicitly associated with objects, and thus extra

parameters for types or operations need not be mentioned.

Second, the type of a polymorphic procedure mentions the names of existing types.

For example, the declared type of the Trellis/Owl version of sumFirst is

hIntPair, IntPair -- Int,

which means that all types that are subtypes of IntPair (such as IntTriple) can be

used as arguments. The type of the ML version of sumFirst, which is

T1, T2, (Ti --* Int), (T2 --. Int) --- Int

for all types T1 and T2, does not mention existing types such as IntPair. One advantage

of mentioning existing types is that the type system can check that each argument has

a type that is a subtype of the corresponding formal argument type. We will show later

how this property can be used in program verification. In ML, the type system does

not have such semantic information about types and cannot aid one's verification to the

same extent as in Trellis/Owl.

Figure 1.3: Implementation of the function sumFirst in ML.

val sumFirsi(pl,p2,first1,first2) =

firstl(pl) + first2(p2)

15

1.3 Specification and Verification Problems

In this section we describe the problem that we address in this dissertation: how to

specify and verify programs that use inclusion polymorphism.

Conventional specification techniques are poorly matched to programs and functions

that use inclusion polymorphism, because they do not exploit the implicit association of

instance operations with objects.

We want to specify functions that use inclusion polymorphism in a way that parallels

code that uses inclusion polymorphism. For example, the specification in Figure 1.4

corresponds closely to the Trellis/Owl code for sumFirst given above, since it is written

as if all arguments must have type IntPair. But we also allow instances of subtypes of

IntPair, such as IntTriple, to be passed as arguments.

The effect of sumFirst is described in Figure 1.4 using terms that are tailored to the

type IntPair. That is, we think of the abstract value of an IntPair as a pair of integers.

A set of abstract values is described by functions, such as the pairing function "(,)" and

the postfixed function ".first," which returns the first component of a pair.

However, when the arguments have type IntTriple, there is a problem understanding

the description of the effect of sumFirst. To illustrate this problem, we describe the ab-

stract values of IntTriple as sequences of three integers, such as (4,5,6), with postfixed

selector functions "[1]," "[2]," and "[3]." Consider the following call to sumFirst:

sumFirst(make(IntPair,1,2), make(IntTriple,4,5,6)).

The abstract value of make (IntTriple,4,5,6) is the sequence (4, 5,6). However, since

the specification of sumFirst uses the type IntPair, we cannot describe the result by

substituting the abstract value (4,5, 6) into the description of the effect of sumFirst, as

the term "(4,5,6).first" is meaningless (since we can only apply ".first" to the abstract

values of IntPair).

Figure 1.4: Specification of the function sumFirst.

fun sumFirst(pl,p2: IntPair) returns(i:Int)
effect i = pl.first + p2.first

16

To give a formal semantics to specifications that allows arguments of all subtypes of

the specified formal argument types, we must also have a formal definition of when one

abstract type is a subtype of another.

Of the formal definitions of "subtype" that have appeared in the literature', only the

work of Bruce and Wegner [BW87] has a definition of subtyping among abstract data

types. However, Bruce and Wegner's definitions do not handle incompletely specified

and nondeterministic types, both of which are important in practical use. (We discuss

Bruce and Wegner's work and the work of others in more detail in Chapter 5.)

Conventional techniques for program verification also need to be adapted for verifying

programs that use inclusion polymorphism. One problem is illustrated by our difficulties

reasoning about the call to sumFirst above; that is, we need a way to coerce the abstract

value of a subtype into an abstract value of its supertypes. Another verification problem

arises because often we only know that an expression of a given type T denotes an instance

of some subtype of T. We must ensure that reasoning about such expressions as if they

denoted instances of type T does not lead to invalid conclusions.

1.4 Overview of Our Solution

Our ideas for solving the specification and verification problems described in the previous

section are based on concepts used by programmers working in languages with generic

invocation mechanisms. We simplify the problem by only dealing with an applicative

programming language and with immutable types. (An immutable type is an abstract

type whose instances have no time-varying state.)

The fundamental concept is the notion of a subtype. Informally, each instance of

a subtype behaves like some instance of its supertypes. To formalize this notion, we

formalize the implicit notions of "type" and "behavior."

Abstract types are described by specifications. The implementations of type specifi-

cations are formally modeled with a family of algebras.

The behavior of an instance is determined by the way it affects the output of code

run in an environment that binds the instance to some identifier used in that code. Since

instances can interact, we speak of the behavior of the environment itself, and how it

'A survey can be found in [DT88].

17

affects the output of code that uses the identifiers defined by the environment. The formal

model of such code is called an observation. For example, sumFirst (pl,p2) defines an

observation on environments where pi : IntPair and p2 : IntPair are defined.

We say that one environment imitates another when the first environment behaves

like the second, with respect to each observation of interest. For example, an environment

ql such that rl(p2) is an IntTriple with abstract value (4, 5, 6) imitates an environment

r72, where 772(p 2) is an IntPair with abstract value (4,5) with respect to the set of

observations defined by first(p2) and second(p2).

We use imitation to evaluate the assertions in specifications as follows. We assume

that we can evaluate assertions in an environment where for each type T, each identifier of

type T denotes an instance of type T. We call such an environment a nominal environment.

To evaluate an assertion in an environment that is not nominal, one finds a nominal

environment that the first environment imitates and then evaluates the assertion in the

nominal environment. For example, the assertion "p2.first = 4" holds in the environment

7, described above, because rh imitates the nominal environment 772 described above, and

in 772 "p2.first" is 4.

We define subtyping so that one can always evaluate the assertions in our speci-

fications. Since our specifications only allow instances of subtypes as arguments, the

environments created by binding the actual arguments to the formals are such that each

identifier of some type T denotes an object of some subtype of T. Our definition of sub-

typing ensures that each such environment imitates some nominal environment. Since

one can always find a nominal environment, one can always evaluate the assertions in our

specifications. For example, one can pass arguments of type IntTriple to sumFirst, be-

cause one can always find instances of IntPair that the instances of IntTriple imitate.

We can prove subtype relationships by showing that every instance of each subtype

simulates some instance of its supertypes. Simulation is preserved by each generic invoca-

tion, whereas imitation is only guaranteed to preserve externally observable behavior. For

example, an instance of IntTriple whose abstract value is (4,5,6) simulates an instance

of IntPair whose abstract value is (4,5), since the result of applying the operations

first and second to the IntTriple simulate the results of applying these operations to

the IntPair. (For the built-in types like Int, simulation means equality.)

18

We use simulation relationships during program verification to translate the abstract

values of a subtype into the abstract values of a supertype. For example, to find the

effect of

sumFirst(make(IntPair,1,2), make(IntTriple,4,5,6)),

one proceeds as follows. The abstract value of make (IntTriple,4,5,6) is the sequence

(4, 5, 6). This instance simulates an instance of IntPair whose abstract value is (4, 5), so

one takes (4,5) as the abstract value of the actual. One can then substitute the abstract

values of the actuals into the description of the effect, obtaining

i= (1,2).first + (4,5).first

which can be simplified to "i = 5."

In the rest of this dissertation we not only work out the above solution in detail,

but we also show how to treat more interesting examples. In particular, we show how

to handle incompletely specified and nondeterministic types. Incomplete specifications

are important, because they allow a designer to leave implementation decisions open.

Nondeterminism is important for some applications and also can be used to leave imple-

mentation decisions open.

1.5 Plan of the Dissertation

In this section we describe where the above concepts are discussed in this dissertation.

Chapters 2 and 3 provide context and background. In Chapter 2 we describe algebraic

models of specifications and specifications for abstract types. In Chapter 3 we describe

observations and how they are described by a programming language with a generic

invocation mechanism.

In Chapter 4 we describe a technique for the specification of functions and programs

that use inclusion polymorphism. A formal semantics of such specifications is given that

uses the "imitates" relation between environments.

In Chapter 5 we give a formal definition of subtype relationships. We show that this

definition ensures that the specifications described in Chapter 5 are sensible.

In Chapter 6 we give a formal definition of simulation. We show how to use simulation

relationships to prove subtype relationships.

19

In Chapter 7 we show how simulation can be used in program verification. Simulation

relationships are used to translate assertions from subtypes to supertypes. These trans-

lations are used in a Hoare-style proof system for the applicative language introduced in

Chapter 3.

In Chapter 8 we discuss how our results can be applied in other programming lan-

guages; we also discuss extensions and future work. In Chapter 9 we offer a summary

and some conclusions. In particular, we discuss lessons for programmers and language

designers.

In Appendix A we summarize the notation and definitions introduced throughout

the dissertation. In Appendix B we describe the built-in types of the type specifications

described in Chapter 2. In Appendix C we give the semantics of the recursively-defined

functions of the programming language described in Chapter 3; we also show that these

functions preserve simulation relationships.

20

Chapter 2

Algebraic Models of Type Specifications

The primary purpose of this chapter is to define the semantics of immutable type spec-

ifications, for use in our definition of subtype relations. We take a "loose" view of type

specifications; that is, the semantics of a type specification is a set of algebraic mod-

els. We also describe a specification language that we use in examples and for program

verification.

In what follows we first define algebras. We then describe our specification language

and its semantics. Afterwards we discuss how nondeterminism and exceptions are han-

dled.

2.1 Algebras

We use algebras to model specifications of immutable abstract types. Our algebras

are an extension of the relational structures studied by Nipkow [Nip86] [Nip87]. These

structures consist of a carrier set for each type and a set of nondeterministic operations.

To Nipkow's relational structures we have added functions, called trait functions, that

aid in the evaluation of assertions [Win83, Chapter 2]. As we explain algebras, we point

out some differences from Nipkow's notation.

The operations of an algebra are abstractions of the procedures of the classes that

implement abstract types in object-oriented programs. To model nondeterministic pro-

cedures, the operations of an algebra are set-valued functions. That is, an operation of an

algebra returns the set of the possible results of the corresponding procedure. To model

procedure calls that do not halt or that encounter run-time errors, we use the special

value I. So a procedure that might either return 1 or never halt on some argument

q would be modeled by an operation that, when called with q, has {1, J-} as its set of

21

possible results.

The operations of an algebra are named by operation symbols of the form gg-. The

signatures used as subscripts on the operation symbols list the types of the arguments

and the type of the result for the algebra's operation. Unlike the procedures of a class,

which may be polymorphic if they use generic invocation, the operations of an algebra are

not polymorphic. We model a generic invocation by subscripting the generic operation

symbol used in a program (e.g., g) with the types of the actual arguments, and consulting

the appropriate operation of the algebra to find the set of possible results (see Chapter 3

for details). While it might be more elegant to have algebras model generic invocation,

we chose to model generic invocation in the semantics of our programming language, so

that our algebraic models of type specifications more closely resemble standard algebras.

In addition to its operations, an algebra also has a set of trait functions. These

functions have no counterpart in the classes that implement abstract types. The trait

functions are specified by traits, which are descriptions of sets of abstract values [GH86b],

called sorts.

In our formal models, we do not have separate representations for abstract values and

for objects. That is, we identify the objects of a type with their abstract values. So each

type symbol is also the name of a sort. Since some sorts are described using other sorts,

in general there may be more sorts than there are types.

There is a small set of types in an algebra called the visible types. These types, such

as Bool and Int, are used to define observations.

For each sort T in some set SORTS of sort symbols, an algebra A has a set, AT, called

the carrier set of T. If q E AT, then we say that q has sort T; furthermore, if T is also

type, we say that q has type T or that q is an instance of type T. An element of a carrier

set, often written o, q, or r, is also called an object. Each sort's carrier set contains the

element 1. An element of a carrier set is called proper if it is not I. So that each proper

object has only one sort, the carrier sets of an algebra must be disjoint, except that _L

is in each of them. So the carrier set of an algebra A, written JAI, is a family of sets

indexed by sort symbols, that are disjoint except that each contains 1. The family of

carrier sets indexed by type symbols is written ATYPES.

An I-indexed set is a surjective function from an index set I to the elements of a set.

23

For example, ATYPES is a TYPES-indexed family of sets, since

ATYPES = {AT I T E TYPES}. (2.1)

An operation on a carrier set is a mapping that takes a tuple of zero or more elements

of a carrier set and returns a nonempty set of possible results. A possible result is simply

an element of a carrier set. We also regard operations as binary relations, where the set

of possible results of an application of a binary relation f to a tuple of arguments q- is

f(q) df {r I (-Ir) E f}. (2.2)

As above, we often use vector notation for tuples. For example, the notation q-stands

for a n-tuple (ql,...,qn), where n > 0. We say that q has type S, written q" E Ag, if

each qj has type Si. The notation Ag stands for As1 x ... x As., where if S = (), then

A f {()}. The same notation is also used for sorts.

Each operation in an algebra has a name and a signature. If TYPES is a set of type

symbols, then an element of (TYPES* x TYPES) is called a signature and is written as

--+ T or S,. •., Sn --+ T or S --* T. An operation symbol has its signature as a subscript, for

example, g9-T. A family of typed operation symbols is a (TYPES* x TYPES)-indexed

family of sets. If OPS is a family of typed operation symbols, then we abbreviate the

statement that g-T is an element of OPS..T by writing g9-T : S -- T.

A set of typed operations on A TYPES is a set of operations indexed by a family of

typed operation symbols, with the following property: for each operation Agg T and for

each tuple q4E Ag, AggT(q) is a nonempty subset of AT.

A function (or operation) is strict if whenever one of its arguments is .-, then the

(only possible) result is 1. A function (or operation) is total if whenever all its arguments

are proper (i.e., not 1), then no (possible) result is 1. A function (or operation) that is

not total is partial.

A trait function is a strict and total mapping that takes a tuple of zero or more

elements of a carrier set and returns an element of the carrier set.

A family of sorted trait function symbols is a (SORTS* x SORTS)-indexed set.

A set of sorted trait functions on JAI, is a set of trait functions indexed by a family

of sorted trait function symbols with the following property: for each trait function

AfS T and for each tuple jE Ag, Af(0 E AT.

L===ad

24

Definition 2.1.1 (algebra). An algebra A = (JAI, A TYPES, A TFUNS, Aops), consists of:

* a carrier set, JAI,

" a family of carrier sets for each type, ATYPES,

" a set, ATFUNS, of sorted trait functions on JAI, and

" a set, Aoes, of typed operations on ATYPES.

Besides the addition of trait functions, our algebras differ from Nipkow's because

Nipkow does not use _ to represent nontermination. Instead Nipkow describes each

operation by a binary relation giving its input/output behavior for proper elements and

a termination set that describes the inputs for which termination is guaranteed. As

Nipkow suggests, we can translate from his notation into ours [Nip87, Page 9]. However,

the operations of our algebras can be non-strict, while the operations of Nipkow's algebras

must be strict. Non-strict operations are useful for modeling types with lazy evaluation,

such as streams.

We classify operations and algebras as follows [Nip87, Page 9]. If an application of an

operation has a single possible result, it is deterministic. An operation is deterministic if

all applications of that operation are deterministic. An operation that is not deterministic

is nondeterministic. An algebra is total or deterministic if all its operations have that

property. An algebra is partial or nondeterministic if some of its operations are partial

or nondeterministic.

An example algebra, B, is presented in Figure 2.1 (on page 26). The figure first

defines the carrier sets for each type, then the trait functions, and finally the possible

results of the operations. The carrier set for the type Bool contains 1, true and false.

The only proper element of the carrier set for BoolClass is Bool, which is used like a

class object in an object-oriented language. The trait functions symbols contain sharp

signs (#) as place holders for arguments, allowing prefix and infix syntax for invocations.

The operations themselves include the nullary operation named Bool-Boolela.S which

has the "class object" Bool as its only possible result, class operations for true and false,

and instance operations for the usual logical operations. We abbreviate the description

of trait functions and operations by the following conventions.

25

" A variable such as b only stands for a proper element of the appropriate carrier set,

never for I.

" The only omitted cases involve I as an argument, and for these the only possible

result is I.

" The trait functions are used to define the operations.

Notice that all the operations of B in Figure 2.1 are strict, total, and deterministic.

Hence B is a total and deterministic algebra.

Each algebra has a signature, which is defined below. Following Nipkow, we include

in the signature a set of visible types, which are used to define observations.

Definition 2.1.2 (signature). If A = (IAI, ATYPES, ATFUNs, Aops) is an algebra, then

its signature, SIG(A) = (SORTS, TYPES, V, TFUNS, OPS), consists of:

" the set, SORTS, of sort symbols that index the carrier set of A,

" a nonempty set, TYPES C SORTS, of the type symbols that index ATYPES,

" a nonempty set, V C TYPES of visible types,

" the set, TFUNS, of sorted trait function symbols that index the trait functions of

A, and

" the set, OPS, of typed operation symbols that index the operations of A.

In other chapters we often abbreviate signatures by omitting the set of sort symbols

SORTS.

If SIG(A) = E, then A is a E-algebra. We call

El = (SORTS', TYPES', V', TFUNS', OPS')

a subsignature of

E = (SORTS, TYPES, V, TFUNS, OPS)

if SORTS' C SORTS, TYPES' C TYPES, V' C V, TFUNS' C TFUNS, and OPS' C

OPS [EM85, Section 6.8]. By TFUNS' C TFUNS, we mean that the subset relationship

holds at each index.

26

Figure 2.1: An algebra B for the Booleans.

Carrier Sets

BBo1 = {II, true,false}

BBoolelas = {I, Bool}

Trait Functions

BB.oo() ef Bool

Btrue(true

Bfaise() - false

def false if b = true
, true if b = false

def true if/b = b2 = true
B#&#(b 1 , 2) false otherwise

B , ef false if b1 = b2 = false
B#1#(bib 2) true otherwise

L ef false if b, = true and b2 false
Strue otherwise

def true if b1=b2
B# =#=(bi, b2) false otherwise

Operations

BBoo1-BooCtlass() IeF {Bool}

BteruooxClass-Bool (Bool) de {true}

BiaisepolC*asz-_ooi (Bool) de_ {false}
B otBool-Booj (b) {B-#(b)}

BandBool 001 Bool(b, b2) d__ {B#&#(bl, b2)}

BoroolBool Bool(bl, b2) d'Le' {B#I#(b1 , b2)}

27

Let E V = (V, V, V, TFUNSv, OPSv) be a fixed signature for the visible types.

If E V is a subsignature of SIG(A) = (SORTS, TYPES, V', TFUNS, OPS), then the

E V-reduct of A is the algebra

A(E v) 4.f ({AT TE V},{JA, IT E V}1 (23
= {A If E TFUNSv}, {AgT I 9T E OPSv} (2.3)

[EM85, Section 6.8]. That is, A(.v) has as its carrier sets the carrier sets of the visible

types in A and as its trait functions and operations those named in E V.

We assume that the visible types and their semantics are fixed by convention, that is,

by one's programming or specification language. This assumption allows us to compare

the results of observations, since the possible results of an observation must be instances

of visible types. We state this assumption formally as follows. Let B be a fixed algebra

whose signature is E V. Formally, our assumption is that for each E-algebra A, the fixed

signature E V is a subsignature of E, the set of visible types in E is V (the same as in

E V), and the E V-reduct of A is the fixed algebra B. In the next section we describe

this convention for our specification language.

The semantics of a specification is a set of algebras with the same signature. Each

algebra in the semantics of a specification named SPEC is called a SPEC-algebra. The

following sections present one way of describing such sets.

2.2 Type Specifications

In this section we describe our specification language, which is adapted from Wing's

interface specification language for CLU [Win83] [LG86, Chapter 10] [GHW85] [Win87].

We have modified Wing's syntax, in part to distinguish class operations from instance

operations. Unlike Wing, we deal only with immutable types.

For us, a specification has the following goals:

" describing a set of algebras, and

" describing an interface for programmers that consists of a set of generic operation

symbols and their nominal signatures.

The algebras we specify have many characteristics of Trellis/Owl classes, such as oper-

ations that return class objects and operations that model class and instance operations.

28

A generic operation symbol may be present in many different type specifications. We

use this convention to support generic invocation. For example, we specify first as an

operation of both IntPair and IntTriple.

Each of occurrence of a generic operation symbol in a specification is associated with

a different nominal signature, which is a pair consisting of a tuple of type symbols and a

type symbol, written -+ T or S1,..., S,, --+ T or S --+ T. The nominal signatures of generic

operation symbols are used in type-checking and reasoning about programs.

Abstractly, a specification has four parts: a set of type symbols, a binary relation on

these type symbols, a set of traits, and a specification of the operations of a model. We call

the binary relation on types a presumed subtype relation, since it should relate subtypes

to supertypes. Each trait describes the abstract values of a type; formally it specifies

the carrier set and trait functions of a model. (Unless these traits are unconventional,

they will be found in the Larch Shared Language Handbook (GH86a].) The bulk of our

specifications is taken up by operation specifications.

An example specification, named IPT, is found in Figure 2.2. We will use the specifica-

tion IPT to help explain our specification language in this section. The trait "ThreeSeq"

that describes the abstract values of IntTriple is found in Figure 2.3.

We first describe the syntax of specifications, then how a specification determines

the syntactic interfaces of the algebras in its semantics, and finally how a specification

determines the behavior of these algebras.

2.2.1 Type Specification Syntax

The syntax of type specifications is given in Figure 2.4. The nonterminals (type),

(trait function), and (identifier) represent type symbols, trait function symbols, and

generic operation symbols and other identifiers (respectively).

A specification consists of a list of (type spec)s, each of which specifies an abstract

type. A (type spec) has a type name, lists of the generic operation symbols that name the

type's class and instance operations, a (basis) clause, and a list of operation specifications.

The (basis) clause tells what trait is used in the operation specifications. Operations can

be specified to be deterministic or nondeterministic by using either op or ndop. Each

(op spec) also lists the operation's nominal signature.

29

Figure 2.2: The type specification IPT, containing IntPair and IntTriple.

IntPair immutable type
class ops [make] instance ops [first, second]
based on sort C from Pair with [Int for T1, T2]

op, make(c: IntPairC lass, f,s:Int) returns (p: Int Pair)
effect p = (f's)

op first (p: Int Pair) returns(i:Int)
effect i = p.first

op second (p: Int Pair) returns(i:Int)
effect i = p.second

IntTriple immutable type IntPair
class ops [make] instance ops [first, second, third]
based on sort C from ThreeSeq with [Int for T]

op make(c:IntTripleClass, f,s,t:Int) returns (r: IntTriple)
effect r = (f,s,t)

op first (t: IntTriple) returns(i:Int)
effect i =t1

op second (t: IntTriple) returns(i:Int)
effect i = t[2]

op third (t: IntTriple) returns(i:Int)
effect i = t[31

30

Figure 2.3: The trait ThreeSeq that describes the abstract values of IntTriple.

ThreeSeq: trait
introduces

(#, #, #): T,T,T --+ C

#[11: C- T
#[2: C- T
#[3]: C-- T

asserts C generated by [(#, #, #)I
C partitioned by [[1], [21, [3]]
for all [f,s,t: T]

(f,s,t)[1] = f
f, s, t)[2] =

(f, s, t)[3] - t
implies converts [[1], [2], [3]

The behavior of an operation is described using a (requires clause) and an

(effects clause). These clauses contain boolean (term)s written using trait function sym-

bols, the formal arguments of the operation, and equations. These terms must sort-check

in the sense that trait functions can only be applied to terms of the expected sorts and

equations are only allowed between terms of the same sort.

In an (op spec) for an instance operation that appears in the specification of a type

named T, the first argument's type must be specified to be T. Similarly, the first argument

of a class operation of a type T must be specified to be TMlass, where TClass is formed

by joining the suffix Class to the type name T.

For convenience, we define the following syntactic sugars. An (trait function) such as

"f" used in a (term) without arguments is syntactic sugar for "0." A declaration such

as "f,s: Int" is syntactic sugar for the declaration list "f: Int, s: Int." Furthermore, an

omitted (requires clause) is syntactic sugar for a requires clause of the form "requires

true." A syntactic sugar for exceptions is discussed in the last section of this chapter.

2.2.2 Syntactic Interfaces of Type Specifications

A specification describes two syntactic interfaces. The first interface is a set of generic

operation symbols and their nominal signatures. The second interface is the signature

of the algebras that satisfy the specification. The signature of the algebras that satisfy

31

Figure 2.4: Syntax of Specifications.

(specification) ::= (type spec list)
(type spec list) ::= (type spec) I (type spec list) (type spec)

(type spec) ::= (type) immutable type
(class ops) (instance ops)
(basis)
(op spec list)

(class ops) ::= (empty) I class ops [(ident list)
(instance ops) ::= instance ops [(ident list)
(empty) ::=
(ident list) ::= (identifier) (ident list) , (identifier)

(basis) ::= based on sort (identifier) from (identifier) (with clause)
(with clause) ::= (empty) Iwith [(renaming list)]
(renaming list) ::= (renaming) I (renaming list) , (renaming)
(renaming) ::= (identifier) for (ident list)

(op spec list) ::= (op spec) I (op spec list) ,(op spec)
(op spec) ::= (op kind) (op signature)

(requires clause) (effect clause)
(op kind) ::= op I ndop
(op signature) ::= (identifier) ((decl list)) returns ((decl))
(decl list) ::= (decl) I (decl list) , (decl)
(decl) ::= (identifier): (type)

(requires clause) ::= requires (term)
(effect clause) ::= effect (term)

(term) ::= (identifier)
I (trait function) ((term list)) (trait function) ()
I (term) = (term) ((term))

(term list)::= (term) (term list) (term)

32

a specification is partly determined by the set of generic operation symbols and their

nominal signatures.

The set of generic operation symbols of a specification consists of the symbols following

op or ndop in (op spec)s, all type symbols that are not class types, and generic operation

symbols for the visible types. For example, the set of generic operation symbols of

IPT includes make, first, second, third, IntPair, IntTriple, Bool, Int, IntStream,

BoolStream, and generic operation symbols for the visible types such as true, false,

not, and, or, add, and so on.

The set of type symbols described by a specification consists of the type symbols

named at the beginning of each (type spec), the visible types Bool, Int, IntStream,

and SoolStream, whatever OneOf types are necessary (as described in the section on

exceptions below), and a class type for each of the types already mentioned, formed by

adding "Class" as a suffix to each of the other type symbols. For example, the set

of type symbols of the specification IPT includes IntPair, IntTriple, IntPairClass,

and IntTripleClass, in addition to the visible types and their associated class types:

BoolClass, IntClass, IntStreamClass, and BoolStreamClass. A type symbol such as

IntPair is a generic operation symbol with no arguments.

The generic operation symbols associated with the visible types are found by taking

the operations associated with those types (see Figures 2.1, B.1, and B.2) and strip-

ping the associated operation symbols of their subscripted signatures. For example, in

Figure 2.1, the operation nOtBool--.Bool is defined, which means that a generic operation

symbol not is associated with Bool.

We summarize the association of generic operation symbols and nominal signatures

in a specification with a set-valued function, called a nominal signature map. It takes a

generic operation symbol and returns a nonempty set of nominal signatures. If NomSig

is a nominal signature map and (S -+ T) E NomSig(g), then g has nominal signature

-+ T.

A specification determines a nominal signature map, NomSig, as follows. For each

generic operation symbol of the specification g, a nominal signature is an element of

NomSig(g) if and only if either:

e the nominal signature is S -- T and g is associated with a visible type because 9§.T

33

is a typed operation symbol from Figure 2.1, B.1, B.2, or the analogous algebra for

BoolStream (see Appendix B),

" the nominal signature is -4 gClass, the specification includes g as a type symbol;

and gClass is the type symbol formed by attaching "Class" as a suffix of g, or

" the nominal signature is S --+ T, and g is a class or instance operation specified with

operation signature:

(: S) returns(y: T).

For example, if NomSig is the nominal signature map of IPT, then we have:

NomSig(not) = {Bool --+ Bool}

NomSig(IntPair) = {--+ IntPairClass}

NomSig(make) = {IntPairClass, Int, Int -- IntPair,

IntTripleClass, Int, Int, Int -- IntPair,}

NomSig(first) = {IntPair -- Int,

IntTriple -- Int}.

We require that for each generic operation symbol g, the nominal signatures in

NomSig(g) with the same number of argument positions all differ in their first argu-

ment position, and there is at most one element of NomSig(g) with no argument types.

The signature, E = (SORTS, TYPES, V, TFUNS, OPS), determined by a specifica-

tion SPEC, has as its set of type symbols, TYPES, the set of type symbols of SPEC,

and as its set of visible types

V = {Bool, Int, BoolStream, IntStream}. (2.4)

The set of sorts SORTS and the set of sorted trait function symbols, TFUNS, are de-

termined by the traits referenced in the (basis) clauses of SPEC. These traits introduce

various sorts and operations, which become the sorts and trait function symbols, as re-

named by the (renaming) clause. In addition to these, we add a trait for each class type

TClass of the form

TClass: trait

34

introduces T: -+ TCass.

The sort name following the keyword sort in the specification of a type named T is re-

named to T. The signature of each trait function symbol from a trait referenced in the

(basis) clause of the specification of a type T has the sort name following the keyword sort

replaced by T, in addition to the other renamings. The set of operations OPS is deter-

mined by attaching to each generic operation symbol g each subscript from NomSig(g).

That is,

OPS de= 1g:-T I(g E GOP) A ((S --+ T) E NomSig(g))}. (2.5)

For example, the signature of an IPT-algebra has operation symbols firstntPi,--Iat

and firstintTriple._int, because first is a generic operation symbol and NomSig(first)

consists of IntPair --+ Int and IntTriple - Int.

If SPEC is a specification, then we write SIG(SPEC) for its signature.

2.2.3 Satisfaction for Type Specifications

Besides having the right signature, to satisfy a specification an algebra must satisfy both

the specification's traits and its operation specification, and its model of the visible types

must be standard.

Since the traits used in a specification do not specify the operations of a model, we

can use a standard definition of satisfaction for traits, by extracting the carrier tet and

trait functions from an algebra.

Let A = (JAI, A TYPES, A TFUNS, Aops) be an algebra. Then the functional structure of

A is formed by deleting _L from each sort's carrier set, restricting the trait functions to

these domains, and throwing out ATYPES and Aops. The trait functions are defined on

carrier sets without J_ because they are strict and total. A functional structure is thus a

multi-sorted algebra, as used in the semantics of first-order logic.

We say that A satisfies the traits of a specification if and only if the functional

structure of A is a model of those traits.

We evaluate the terms in a requires clause or an effects clause in the standard way,

using extended assignments. An assignment is an map from a set of sorted identifiers to

the carrier set of an algebra that maps each identifier of sort T to a proper element of

35

sort T. We can extend such an assignment to an evaluation of terms whose free identifiers

are in the domain of the assignment by using the trait functions of the algebra in the

assignment's range to evaluate trait function symbols and by using the assignment itself

to evaluate free identifiers [EM85, Section 1.101. If 7 : X - IAI is such an assignment,

we write il for its extension to a mapping from terms to elements of the carrier set of A.

For example, if i7(p) = (1,2), and A#.mt((i,j)) = i, then

iip.first] = A#.rut(77(p))= A#.ft((1,2)) = 1.

We further extend assignments so that

S= E2 1 d f true if i [E1l = il[E2J (2.6)1, false otherwise.

We assume that the carrier set of Bool is as in Figure 2.1 in all algebras; hence true and

false are objects in all algebras.

We also use the following shorthand for adding a binding to an assignment:

77[q/x] f Al. if I = x then q else 77(l). (2.7)

Definition 2.2.1 (satisfies for operations). Consider the following operation speci-

fication:

ndop g(i: S) returns(y:T)

requires P

effect Q

where and P and Q are boolean terms such that the free identifiers of P are from the

xi Si and the free identifiers of Q are from the xi : Si and y : T. Let X be the set of the

xi Si. The operation Ag -T satisfies the specification of g given above if and only if for

all assignments i whose domain is X and whose range is ATYPES, the following condition

holds. If

= true, (2.8)

then for all possible results q E AgT(rl(X)),

q L (2.9)

7[q/yI[Q! = true. (2.10)

36

Furthermore, whenever some argument to the operation is L, then the only possible

result is I_.

We say a tuple of proper arguments satisfies the requires clause "requires P" if

when y is an assignment that maps the formals to the given tuple of arguments, then

T[P] = true.

If g is specified with op instead of ndop then an operation A 99-T satisfies the specifi-

cation of g with nominal signature S -* T if in addition to the above requirements A 9T

has only one possible result on all proper arguments " that satisfy the requires clause of

g.

For example, the operation defined by

AfirstlntPair-Int(p) 4d-f {A#.f ,t(p)} (2.11)

A f {" } (2.12)

(where p is proper) satisfies the specification of the first operation of type IntPair in

Figure 2.2, because for all assignments q that bind some proper IntPair p to p, [truel =

true, and the only possible result is A#.-.t(p). This result is proper and such that

= p.first] = true. (2.13)

(Recall that an omitted requires clause is syntactic sugar for "requires true.")

The nullary operations that name class objects are implicitly specified as follows:

op To returns(y:TClass)

effect y = T.

An operation ATeC,SS satisfies this specification if its only possible result is the result

of AT(), which invokes the trait function T.

Our model of the visible types is the algebra that combines Figures 2.1 (Bool), B.1

(Int), and B.2 (IntStream) and a model of BoolStream that is analogous to IntStream.

These are discussed in Appendix B.

We can now give a formal definition of when an algebra satisfies a specification.

Definition 2.2.2 (satisfies). An algebra A satisfies a specification SPEC if and only

if

37

" SIG(A) = SIG(SPEC),

" the functional structure of A satisfies the traits of SPEC,

" for each operation symbol gg-T in SIG(A), AggT satisfies the specification of g

with nominal signature S --+ T, and

" the SIG(B)-reduct of A is B, where B is the algebra described above that models

the visible types.

For example, the algebra A of Figure 2.5 is an IPT-algebra; that is, A satisfies the

specification IPT.

2.3 Specifying Nondeterministic Types

Nondeterministic operations are useful for modeling both "undefined" behavior and types

that are inherently nondeterministic. An example is the type Mob specified in Figure 2.6.

The next operation of Mob has a non-trivial precondition, specified in its requires

clause. When the requires clause is not satisfied, the set of possible results can be the

entire carrier set of the nominal return type. That is, we can have a Mob-algebra, B,

whose carrier set for Mob is the set of finite sets of integers (plus _1), and in which

BnetNob-Int({}) def Bint = .1_, 0, 1,-1,...}. (2.14)

However, we can also have Mob-algebras in which next is more deterministic (i.e., more
"defined"). For example, we could have a Mob-algebra B' where

B'nextKobInt({) {0}. (2.15)

To allow an operation to be nondeterministic on arguments that satisfy its requires

clause, we must write ndop instead of op in the operation's specification. For exarple,

if B is the Mob-algebra described above, then we can let

BlxtobInt (m) d=f m (2.16)

for all nonempty finite sets of integers m. Thinking of operations as relations, the oper-

ation BnextMob-Int is the largest relation such that the specification is satisfied; the only

limitation is that each possible result must be an element of the argument set.

38

Figure 2.5: An IPT-algebra, A.

Carrier Sets

AintPair cfII} U {(i,j) I (i,j E A1~t) A (i, j J-) I

AIntPairClazs 11 {, IntPair}
AlntTriple I {I}I U { (i,j, k) I(i, j, k E AInt) A (i, j, k 54 -L)}

AlntTripleClass f {I-, Inff~iple}

ABo L-I I,true,false}

Trait Functions
Ajntpair,() 4fIntPair

A#.r.t((i j))j=
def~

AlntTriple() c1f I-t Triple

A(##,) (jk) -e (i, j, k)

ef

ABoOI() =e Bool

Operations

AIntPair...Intpairclas () 'f {IntPair}

Amake~ntPafrClassntInt..IntPaLr (IntPair, if I)~{(ij) }

Afrtn~i-n (P) IA.t~)

def

AuakelntTripleClass.Int ,Int,Int-.IntTriple (Int Triple, i, j, k) =-e f (i, j, k) I

AsecondlntTripie-Int ()f A#[]()

AthirdlntTriple Tnt (t) A#1{A3] (t)}

ABoo1-BoolClass() f f {B0011

39

Figure 2.6: Specification of the nondeterministic scheduler type Mob.

Mob immutable type
class ops [new] instance ops [ins, waiting?, empty? next]
based on sort C from Set with [int for T]

op new(c:MobClass) returns(m:Mob)
effect m = {}

op ins(m:Mob, i:Int) returns(r:Mob)
effect r = m U {i}

op waiting?(m:Mob, i:Int) returns(b:Bool)
effect b = (i E m)

op empty?(m:Mob) returns(b:Bool)
effect b = (m = {})

ndop next(m:Mob) returns(i:Int)
requires m 7 {}
effect i E m

Again, an operation can satisfy the specification of next without having this much

nondeterminism. For example, consider an algebra C that is the same as B above except

that, for all nonempty finite sets of integers m,

Cnext.ob-int (m) defj {min(m)}. (2.17)

2.4 Specifying Types with Exceptions

Instead of specifying operations with non-trivial preconditions or arbitrarily defining

a result, we often wish an operation to signal an exception [Goo75]. A programming

language can define a mechanism to handle exceptions that arise while executing an

invocation, as is done in CLU [LS79] and Trellis/Owl. When we discuss exceptions, we

suppose that all operations of an algebra return OneOf objects. A OneOf object with

tag normal models the normal return, while a Oneof objects with other tags model

exceptional results.

A Oneof type is like the variant or discriminated union types that appear in some

40

Figure 2.7: The trait OneOf[normal: Int, empty: Null].

OneOf[normal: Int, empty: Null]: trait
introduces

make-normal: Int -- NE
make-empty: Null -- NE
hasTag?: NE, Tag -* Bool
val-normal: NE - Int
vaLempty: NE -- Null

asserts for all [i: Intl
hasTag?(make -normal(i), normal) = true
hasTag?(make.empty(nil), empty) = true
hasTag?(make-empty(nil), normal) = false
hasTag?(make.normal(i), empty) = false
val-normal(make-normal(i)) = i
val-empty(make-empty(nil)) = nil

exempts for all [i: Intl
val-normal(makeempty(nil))
val-empty(make-normal(i))

programming languages, such as CLU [LAB*81]. The carrier set and trait functions as-

sociated with OneOf types are defined as shown by the example trait "OneOf[normal: Int,
empty: Null]," which is found in Figure 2.7. (The type Null has only one proper object,

denoted by the result of the trait function "nil"; it is used as a placeholder in 0aeof

types. The type Tag contains proper objects for each possible OneOf tag.) The generic

operation symbols for a OneOf type are similarly defined.

To explain our syntactic sugar for specifications that use exceptions, consider the

specification of the type Mob2 given in Figure 2.8.

We rewrite each operation specification that specifies an exception so that it returns a

OneOf type instead. The "normal" return from an operation is denoted by a OneOf object
with the tag normal. (We do not allow normal as an exception name.) Each exception

result is denoted by a OneOf object with a tag that is the same as the exception's name.

Therefore the specification of next in Mob2 is syntactic sugar for the specification of

Figure 2.9.

All OneOf types used in this fashion have their specification implicitly included in a

specification that uses them.

41

Figure 2.8: Specification of the type Mob2.

Mob2 immutable type
class ops [new] instance ops [ins, waiting?, empty?, next]
based on sort C from Set with [Int for T]

op new(c:Mob2 Class) returns(m:Mob2)
effect m = {}

op ins(m:Mob2, i:Int) returns(r:Mob2)
effect r = m U {i}

op waiting? (m:Mob2, i:Int) returns(b:Bool)
effect b = (i E m)

op empty?(m:Mob2) returns(b:Bool)
effect b = (m={}

F ndop next(m: Mob2) returns(i :Int) signals (empty(Null))
effect ((inm {} signals empty (nil(Null)))

&((mn${) i E in)

Figure 2.9: Desugared form of an exception specification.

ndop next(in:Mob2) returns(o: One~f[normal: Int, empty: Null])

effect ((in = {}) = - o = inake-empty(nil))
&((in 54}) (hasTag?(o,normal) & val-norinal(o) E in))

42

We can also specify an operation so that it has a choice between signalling and

returning a normal result. (For example, see Figure 5.4 on page 95.)

Chapter 3

Observations by an Applicative Language

The purpose of this chapter is to give a formal definition of observations. Observations are

used both to evaluate assertions (see Chapter 4) and in the definition of subtype relations

(see Chapter 5). A set of observations characterizes a programming language. To make

observations concrete and to provide a notation for examples, we describe an applicative

programming language and how it determines a set of observations. Our language NOAL

(Nondeterministic Object-oriented Applicative Language) is a functional language based

on the lambda calculus. We also use NOAL for examples when we discuss program

verification in Chapter 7.

In the first section of this chapter, we define observations. In the remaining sections,

we describe NOAL and its semantics.

3.1 Observations

We are interested in observations with free identifiers. Such observations are important

because they model procedures that take arguments (existing objects) and manipulate

them with generic invocations. These observations also highlight the problem of reasoning

about programs that exploit inclusion polymorphism based on imprecise information

about the types of arguments. That is, while each formal argument has a type, we only

know that the actual argument's type is some subtype of the formal argument's type.

This imprecise type information is characterized by the types of the free identifiers of our

observations.

A set of typed identifiers is a TYPES-indexed family of disjoint sets, where TYPES

is a set of type symbols. If X is a set of typed identifiers, and if x E XT for some

T E TYPES, then we write x: T, and say that x has nominal type T. If X and Y are

43

44

sets of typed identifiers indexed by the same set and if for each type T, XT g YT, then

we write X C Y.

We use environments to give meaning to the free identifiers of an observation.

Definition 3.1.1 (environment). An environment is a mapping from a set of typed

identifiers to the carrier set of an algebra.

We allow an environment to map an identifier x: T to an object of the carrier set of

an algebra, regardless of the object's type, since this happens in programs that exploit

inclusion polymorphism. This is the major technical difference between our environments

and the environments used in traditional semantics, where each identifier of a given

nominal type is mapped to an element of that type's carrier set.

For convenience, we write ENV(X, A) for the set of all environments whose domain

is a set X of typed identifiers, indexed by a set TYPES of type symbols, and whose

range is the TYPES-indexed family of carrier sets A TYPEs of an algebra A. We often

bind identifiers in environments using the following notation:

i[q/,] df l. if I = x then q else q(l). (3.1)

Observations need both an environment and an algebra to produce a set of possible

results.

Definition 3.1.2 (observation). Let X be a set of typed identifiers. An observation

with free identifiers from X is a mapping that takes an algebra A and an environment

from ENV(Y, A), where X C Y, and returns a set of possible results that have visible

type; that is, if SIG(A) = (SORTS, TYPES, V, TFUNS, OPS), then each possible result

has some type T E V.

We require that the possible results of an observation have visible type, because this

allows us to use an observation on different algebras and compare the sets of possible

results. (Recall that we assume that the carrier sets and trait functions associated with

the visible types are the same in all algebras we observe.)

In the next section we define a programming language with a generic invocation

mechanism that allows one to write observations.

45

3.2 The Programming Language NOAL

The rest of this chapter describes the language NOAL, which is a hybrid of Trellis/Owl

[SCB*86] and Broy's AMPL [Bro86]. We have taken AMPL's lambda calculus and ex-

plicit facilities for nondeterminism and added to it Trellis/Owl's type system and generic

invocation mechanism. Type information aids reasoning, but we give a meaning to pro-

grains icgaidless ,f whethr they are type-safe. Nondeterminism is necessary to make

certain observations on nondeterministic types [Nip86]. The NOAL erratic choice ex-

pression, 1 0 2, has both 1 and 2 as possible results. Operationally, the erratic choice

operator picks one expression at random and evaluates it. Therefore, if evaluation of

one expression may not halt, then the entire expression may not halt. An angelic choice

expression of the form E1 V E2 will always halt if either E1 or E2 always halts. Op-

erationally, the angelic choice operator runs both expressions in parallel and returns the

first result. NOAL is a first-order language; that is functions are not objects in NOAL

programs.

NOAL is only half of an object-oriented language, since we do not provide a class

mechanism in NOAL. Formally, NOAL programs manipulate the algebras described in

the previous chapter. That is, the meaning of a NOAL program is an observation. The

identifiers in a NOAL program denote elements of the carrier set of an algebra. However,

a NOAL program cannot directly call the operations of an algebra; instead it can only

make generic invocations. The set of possible results of a generic invocation is determined

by consulting the appropriate operation of an algebra.

The semantics of NOAL programs makes certain mild assumptions about algebras.

The exact conditions are described in the sections on generic invocation below and in

the section on domains in Appendix C. These conditions are satisfied by the algebraic

models of most specifications written in our specification language. However, NOAL is

not restricted to observing models of our specifications.

i'he type system of NOAL uses a nominal signature map and a presumed subtype

relation to do type checking. It assumes that the nominal signature map is like that

generated by a specification written in our specification language.

In the rest of this chapter we describe NOAL's syntax, generic invocation mechanism,

semantics, and type system.

46

Figure 3.1: Syntax of NOAL.

(program) ::- (expr) I (rec fun def) (program)

(rec fun def) ::= fun (fun identifier) ((decl list)) (type) - (expr)

(decl list::= (decl) I (decl list) , (decl)

(decl) (identifier) (type)

(expr) (identifier)
bottom [(type) I
(generic operation) ()
(generic operation) ((expr list))
(fun identifier) ((expr list))
((function abstract)) ((expr))
if (expr) then (expr) else (expr) fi
(expr) 0 (expr)
(expr) V (expr)
isDef? C(expr))
((expr))

(function abstract) ::= fun ((decl list)) (expr)

(expr list) ::= (expr) I (expr list) , (expr)

3.3 NOAL Syntax

The syntax of NOAL is presented in Figure 3.1. The nonterminal (type) denotes a

type symbol, and (generic operation) denotes a generic operation symbol. We do not

further specify the syntax of identifiers or function identifiers. However, we do not allow

identifiers or function identifiers appearing in a program to be the same as the generic

operation symbols used in that program. We assume that isDef? is neither a function

identifier nor a generic operation symbol.

We also use the following syntactic sugars. We adopt Broy's notation for streams by

considering an expression of the form E1 & E2 to be syntactic sugar for cons (E2 , El). A

declaration such as f, s: Int is sugar for the declaration list f : Int, s: Int. A generic

47

operation symbol such as T used without a list of arguments is sugar for TO. We use

true and false as sugar for true(Bool()) and false(Bool()) and we use 1, 2, and so

on as sugar for one(Int 0), add(one(Int()) ,one(Int ())), and so on.

The following example program has the stream (4) as its only possible result (when

applied to an algebra that includes the types Int and IntStream).

fun su.irst (pl, p2:IntPair):int - add(first(pl),first(p2));

sumFirst(make(IntPair, 1,2), make(IntTriple(3,4,5))) & empty(IntStream)

3.4 Generic Invocation in NOAL

In this section we explain how we translate generic invocations in NOAL into calls on the

operations of an algebra whose signature is E = (SORTS, TYPES, V, TFUNS, OPS).

The translation from a generic operation symbol to an operation symbol is done by

a generic invocation mapping, written Generic. This mapping takes a generic operation

symbol and the actual arguments of the invocation (not the expressions that denote the

arguments), and returns an operation symbol from OPS or the special symbol typeError.

It operates by subscripting the generic operation symbol with the types of the actual

arguments, and then finding an operation symbol with the same actual argument types.

For example, if A is the IPT-algebra of Figure 2.5, then

Generic(f irst, (1,2, 3)) = f irstIntTriple_.int.

Since an operation can only be applied to arguments having the types declared in the

algebra's signature, if there is no operation symbol that matches the actual argument

types exactly, then Generic must return typeError.

Unlike the generic invocation mechanism of a programming language such as

Smalltalk-80, the NOAL generic invocation mechanism has to find a nonpolymorphic

operation. This limitation of our algebraic models imposes a restriction on the algebras

that NOAL programs can observe. In Smalltalk-80, an operation may return objects of

a type that depends on the values of the operation's arguments. Such a Smalltalk-80

operation would have to be modeled by several operations in one of our algebras, each

named by an operation symbol whose return type corresponds to the type of object it

can return. Therefore we assume that whenever there is more than one operation symbol

48

with the same name except for the return type in its subscript (e.g., g9-T1 and g9-T2),

then for each tuple of actual arguments, no more than one of these operations has proper

(i.e., non-_L) possible results. This assumption allows Generic to find the correct opera-

tion symbol from the list of actual arguments (or to pick arbitrarily if all are 1). This

problem also shows why Generic needs the actual arguments and not just the types of

thc actual argurricnts.

To handle nonstrict operations properly, such as the cons operation of BoolStream

and intStream (see Figure B.2), the generic invocation mapping cannot be strict. To

handle cons we must have for b E {true,false} and for i E {0, 1, -1,...}:

Generic(cons, -, b) 4- consBooiftreaEool.Boo1Strea (3.2)

Generic(cons, 1,i) ted CofslntstreanInt.Intstreas. (3.3)

We can have Generic depend on only some of its arguments like this, provided it always

has enough information to make the necessary choices. Our type specification language

only allows one to specify types with strict operations. Therefore, for algebraic models

of specifications written in our specification language, the only nonstrict operations are

the cons operations of the types IntStream and BoolStream.

3.5 NOAL Semantics

The meaning of a program is an observation, which is a mapping from an algebra-

environment pair to a set of possible results. Throughout the following we fix a signature

= (SORTS, TYPES, V, TFUNS, OPS) and a E-algebra A.

3.5.1 Semantics of NOAL Expressions

In this section we give the semantics of NOAL expressions.

The meaning of an expression is described by the function M, which takes an expres-

sion with free identifiers and function identifiers from a set X and returns an internal

observation with free identifiers and function identifiers from X. An internal observation

is an observation whose results need not have visible type.

The following list gives the denotation of each recursion-free NOAL expression in

an environment 'q E ENV(X, A). For convenience, we assume that 7 also maps typed

49

function identifiers to the denotations of recursively-defined NOAL functions.

" The only possible result of an identifier is its value in the environment 77.

M [xi (A,r77) IV I{q (x) } (3.4)

" The only possible result of an expression of the form bottom [(type) I is I. The

type is only included in the expression to make type-checking easier. We have, for

each type T,

M[bottom[T] (A,iq) df {_} (3.5)

" The possible results of a nullary generic operation are determined by consulting the

corresponding operation.

M[ITOJ] (A,77)dcf f A(Generic(T))() if Generic(T) $ typeError (3.6)= {_L} otherwise

" The possible results of a generic invocation are determined by consulting the algebra

for each possible argument list.

MIg (f) I(A, j7)

u A(Geeric(,q))(q) if Geneic(g, q') # typeErro (3

UEM[9(A, {1} otherwise

* The possible results of a recursively defined function invocation are determined sim-

ilarly, except that the meaning of the function identifier is found in the environment

'1.

Mdf(E)(A,q) def U (7(f))(qj (3.8)
,*EA4[0](A)(,7)

* The set of possible results of a combination is the set of possible results of the body

of the function abstract in each environment that extends the original by binding

a list of possible arguments to the formals.

M I(fun (X:-) Eo)(E)I(A, 77) d4e U MI[Eoj(A, t7[,/-]) (3.9)

50

* The set of possible results for an if expression depend on the possible results for

the first subexpression.

M[if E1 then E2 else E 3 fil(A,r/)

def rM[EJ(A,i7) if q = true

d U MI M[E3](A,ri) if q = false (3.10)
qEM[EII(A,,7)I {I} otherwise

* The set of possible results of an erratic choice expression includes those of both

subexpressions.

M[E1 [E2 1(A, 7) dte- M [E1J(A, 7) U M[E 2 (A, q) (3.11)

* The set of possible results of an angelic choice expression is the same as an erratic

choice, except that I is a possible result only if it is a possible result of both

subexpressions.

M[El vE 21(A, rq)

e M[E1J(A,,1) U (M[E2J(A,,7) \ {.L}) if _I V M[E1J(A,q)
(M[E1J(A,Y1) \ {_L}) UM [E2](A, ') if _L qM[E2](A, iq) (3.12)
M [EI (A, 77) U M E2J (A, 77) otherwise

The set s1 \ S2, consists of the elements of s, that are not elements of 32.

* The primitive isDef? can be used to see if an exprezsion's possible results are

proper.
(1) u U {true} ifq # -L

,qElisDef?M(E)E((AA, = q (f {1L} otherwise (3.13)

Since there is no "assignment statement" the only way to bind objects to identifiers

is through function calls or the application of a function abstract. The parameter

passing mechanism of NOAL is lazy evaluation, so isDef? is needed to define strict

functions.

3.5.2 Semantics of Recursive Function Definitions

NOAL programs may begin with a system of mutually recursive function definitions. In

the body of a recursively defined function, there can be no free identifiers or function

51

identifiers, besides those of the other recursively defined functions and the function's

formal arguments.

Since NOAL "functions" can be nondeterministic, their denotations are operations.

Recall that an operation is a mapping that takes a tuple of zero or more elements of a

carrier set and returns a nonempty set of possible results.

It is a difficult problem to find the least fixed points of systems of mutually recur-

sive function definitions in NOAL. We discuss the construction of least fixed points in

Appendix C. In this section we merely give some informal explanations and examples.

NOAL uses lazy evaluation for evaluating function arguments [Sch86, Page 181];

Broy calls the rule call-time-choice. Like call-by-name, call-time-choice uses delayed

evaluation, hence functions written in NOAL need not be strict. However, each actual

parameter is only evaluated once; hence formal parameters are not themselves sources

of nondeterminism. That is, if a formal argument is mentioned twice in the body of a

lambda-abstraction, the same value will be substituted in each instance. The following

program demonstrates the difference between call-time-choice and call-by-name:

fun f (x:Int): Int - add(xx); f(O 0 1).

In our call-time-choice semantics this program has as possible results both 0 and 2; a

result of 1 is not possible with call-time-choice, although it would be possible with call-

by-name. Another interesting example is the following program:

fun choose(x:Int): Int = x V choose(add(x,l)); choose(O).

This program has as its set of possible results all positive integers; furthermore, it is

guaranteed to terminate! If we replaced the angelic choice (V) with an erratic choice (0)

in this program, the program would also have all positive integers as possible results, but

in addition it might not terminate.

3.5.3 Semantics of NOAL Programs

We also use M to denote the function that takes a program with free identifiers from

some set of typed identifiers, and returns an observation with free identifiers from the

same set. Consider the program F; E, with a list of recursive function definitions F, an

expression E, and whose free identifiers are taken from a set X. Let q E ENV(Y, A) be

52

an environment, where X C Y. Let 17' be q[/[-, that is, 7 extended by binding fixed

points f to the function identifiers f defined in F. We ensure that all possible results of

a program have visible type using the following function:

Visible(q) 2 q ifqEA- andTE V (3.14)

{ 1 otherwise

We use the above conventions and the meaning of the expression E to define the meaning

of the program F; E as follows:

M[P; E](A, 17) 42 Visible(M [E)(A, q')). (3.15)

3.6 Nominal Types and Type Checking for NOAL

Type-safe programs are interesting because they can only observe the results of an expres-

sion by invoking the instance operations of the expression's nominal type. For example,

a type-safe program cannot apply third to an expression of nominal type IntPair.

So when observed by a type-safe program, instances of IntTriple that are bound to

identifiers of nominal type IntPair behave like instances of IntPair.

We describe type-safe programs and their nominal types by using a nominal signature

map NomSig, and a presumed subtype relation <.

To support inclusion polymorphism, if S < T, then argument expressions of nominal

type S can be used where arguments of nominal type T are expected (SCB*861.

For our purposes in Chapter 6, we want to ensure that each expression and program

has only one nominal type. Therefore, we assume that the nominal signature map NomSig

satisfies the following conditions, for all generic operation symbols g in the domain of

NomSig.

@ If --+ T E NomSig(g), then there is no other nominal signature in NomSig(g) that

has no argument positions. That is, there is at most one nominal signature of the

form - T in NomSig(g).

* If S -- T E NomSig(g) and 9 is not empty, then every other element of NomSig(g)

with the same number of argument positions differs from S -- T in at least the first

argument position.

53

While this is not the only way to ensure that each generic invocation expression has

only one nominal type, it matches the nominal signature maps our specification language

generates. Bruce and Wegner ensure that each expression has a single type by imposing

a "regularity" condition on < [BW87]. In Cardelli's type systems (e.g., [Car84]), each

expression has several types.

Figure 3.2 shows the type inference rules for NOAL. These rules precisely define the

nominal type of each NOAL expression. In the figure, H is a set of type assumptions of

the form x : T, meaning that the identifier x has nominal type T, or f : S - T, meaning

that the function identifier f has nominal signature S -+ T. We also use vector notation;

: S means that each xi has nominal type Si. The notation H.x : T means H extended

with the assumpti-n x : T (where the extension replaces all assumptions about x in H).

The notatior. H I- E : T means that given H1 one can prove, using the inference rules,

that the expression E has nominal type T. An inference rule of the form:

hi ,h 2

C

means that to prove the conclusion c one must first show that both hypotheses hi and

h 2 hold. Rules written witbout hypotheses and the horizontal line are axioms.

The only rules that allow one to exploit the presumed subtype relation < are [ginvoc],

[fcall] and [comb]. The rules [fcall] and [comb] allow the nominal type of an actual

argument expression to be a presumed subtype of the formal's type. The rule [ginvoc]

is similar, except that one must pick a nominal signature for the generic operation such

that the nominal type of the first actual argument is the same as the nominal type of

the first formal argument.

We do type checkiig on a program by using the nominal types of the program's free

identifiers. Let X be a set of typed identifiers indexed by TYPES; that is, for each

x E X, we associate a nominal type T E TYPES. We can therefore regard X as a set

of type assumptions. We say a program P whose set of free identifiers is X has nominal

type T if we have X I- P : T. Since the syntax of NOAL does not provide a way to declare

the nominal type of each free identifier in a program, we always give this as auxiliary

information.

The set of type-safe expressions over NomSig and < is the 3et of all NOAL expressions

54

Figure 3.2: Type Inference Rules for NOAL

[ident] H.x: T F- x : T

[fident] H.f : -- T - f :§S -* T

--T Class E NomSig(T)
[ngop] H -To TClass

[gi T E NonSig(g), H F- :, a, = S1, a2 S2,...,, < S
[ginvoc] H g(E) :T

H F- f : S--+ T, H -E: 5, 5<
[fcall] H f (E) : T

Hb: Ax - Eo : To, H I-/:- , <
H (fun (i:S) Eo) (E) :To

H -E : Bool, H -E 2 :T, H F- E3 : T
[if] H - (if E, then E2 else E3 fi): T

[erratic] H F E : T, H F E2 : TH F (El [] E2) :T

[angelic] H -E, : T, H F E2 : TH F (El VE 2) : T

[isDef] H F isDef?(E) : Bool

[bot] H - bottom[TI : T

f: 19 -- Tl,...,fm : S7. - T,X : S§1 E T,

f I S, -+ TI,,..f, :S. -*T., x. :S,. -E:T,

[prog] H.fI :S 1 -- T,,..., fm : S- T,, - E :T

fun f. (x,.: 6):.Tm - E1 ;

E

55

that have a nominal type, when type-checked using NomSig, < and the types of their

free identifiers. The set of type-safe programs over NomSig and < is the set of all NOAL

programs whose nominal type is a visible type. If SPEC is a specification with nominal

signature map NomSig and presumed subtype relation <, we write "the set of type-safe

NOAL programs over SPEC."

The nominal type of an expression can be thought of as an upper bound on the types

of values the expression can denote. That is, suppose E is a type-safe expression over

NomSig and <. Then the elements of M[E] (A, 77) must be instances of a type that is

related by < to E's nominal type, if <, NomSig, A, and 77 meet the following conditions.

First, < must be reflexive and transitive. Second, if S < T, then S must have all the

instance operations of T, and the nominal signatures of these operations must be suitably

related. This condition is formalized in the definition of safe relations below. Third, 71

must be such that every identifier is mapped to an instance of some type that is related

by < to the identifier's nominal type. This condition is formalized in the definition of an

environment that obeys a relation below. Finally, the signature of A must be that of a

specification with nominal signature map NomSig and presumed subtype relation <. In

what follows, we formalize the above remarks.

The definition of safe relations parallels the syntactic restrictions placed on the sub-

type relations in Trellis/Owl [SCB*861.

Definition 3.6.1 (safe). Let NomSig be a nominal signature map. Let GOP be the

domain of NomSig. Let < be a binary relation on type symbols. Then < is safe with

respect to NomSig if and only if for every generic operation symbol g E GOP the following

property holds. If T, ArgT2 ,..., ArgT,, -* RetT is an element of NomSig(g), and S < T,

then there must be some a nominal signature S, ArgS2, ... , ArgS,, -+ RetS in NomSig(g)

such that RetS < RetT and for all i from 2 to n, ArgTj < ArgSi .

For example, a relation such that IntTriple < IntPair is safe with respect to the

nominal signature map of IPT. However, a relation such that IntPair < IntTriple is

not safe.

Environments that obey a subtype relation are fundamental to our methods for spec-

ification and verification, as well as our definition of subtype relations.

56

Definition 3.6.2 (obeys). Let E = (SORTS, TYPES, V, TFUNS, OPS) be a signa-

ture. Let X be a set of typed identifiers, indexed by TYPES. Let A be a E-algebra.

Let < be a binary relation on TYPES. Let 77 E ENV(X, A) be an environment. Then

i7 obeys < if and only if for every type T E TYPES and for every x of nominal type T in

X, r/(x) has a type S such that S < T.

Notice that no environment obeys the empty relation on types.

In the following lemma, we show that, if, in addition to the conditions listed above,

each recursively defined function is such that whenever it is given arguments whose types

are subtypes of the formal argument's nominal types, the type of each possible result is

a subtype of the function's nominal result type, then the nominal type of an expression

is an upper bound on the types of the expression's possible results.

This lemma is also the source of the conditions on < listed above. The condition

that < be reflexive comes from expressions such as T, where T is a type symbol, since the

possible results of such an expression have the expression's nominal type. The condition

that < be transitive comes from function calls, where the nominal type of a formal may

be S, the nominal type of the actual may be a < S, and the type of the actual argument

may be a' < a. The condition that < be safe with respect to the nominal signature

map comes from generic invocations, where the generic invocation's nominal signature

must be appropriately related to the signature of the operation that the NOAL generic

invocation mechanism selects.

To handle environments defined on function identifiers in the following lemma we

define "obeys" for functions. Let A be an algebra and let 17 be such an environment

whose range is A. We say that q/ obeys < if for each f : S -# T in the domain of ,

whenever a < S_ and _E Ad, then each possible result of iq(f)(q) has some type r < T.

Lemma 3.6.3. Let SPEC be a specification. Let NomSig be the nominal signature

map of SPEC. Let < be the presumed subtype relation of SPEC. Let E be a NOAL

expression of nominal type T whose set of free identifiers and free function identifiers is

X. Let A be an algebra whose signature is SIG(SPEC). Let 77 E ENV(X, A) be an

environment.

Suppose < is reflexive and transitive, < is safe with respect to NomSig, and q7 obeys

57

<. Then each possible result of M [E](A/) has a type r < T.

Proof: (by induction on the structure of expressions.)

As a basis, we show that the result holds for identifiers, bottom ET], and nullary

generic operations. If the expression is an identifier x : T, then MIWxJ(A, r7) = {7(x)} and

by hypothesis, the type of ij(x) is related by < to T. The result is trivial for bottom[T],

since the only possible result is I.. The result is also trivial for a nullary generic operation

symbol of type T, since < is reflexive and the only possible result has type T.

For the inductive step we assume that the result holds for each subexpression.

" Suppose the expression is a generic invocation g(f). By the type inference rule

[ginvoc], g has some nominal signature S -+ T, E : a, a, = S1, and for each i from

2 to n, o* < Si. Let 4Y be a tuple of possible results from E. By the inductive

hypothesis, ej has a type a;1 such that a < a. Since < is safe with respect to

NomSig and a' < S1, there is some nominal signature a', ArgS2 ,..., ArgSn - RetS

in NomSig(g) such U.,at RetS < T and for all i from 2 to n, Si < ArgS. By definition

of SIG(SPEC), if for each i from 2 to n, ai' = ArgSi, then there is an operation

symbol g;,--.tS and so by the semantics of NOAL, each possible result has type

RetS < T. If there is no such operation symbol, then the only possible result is I

which has type T.

" Suppose the expression is a function call f(E). By the type inference rule [fcall], f

has some nom,,al signature S --+ T, E- : 5, and a < 3. Let j be a tuple of possible

results from E. By the inductive hypothesis, q has a type a' such that at < 5. By

hypothesis < is transitive, so ar' < S. Since r obeys <, each possible result has

some type r < T.

* Suppose the expression is a combination (fun (i : S) E0) (E). By the type

inference rule [comb], E0 has nominal type T, E : 6, and 6 < S. Let q- be a tuple

of possible results from E. By the inductive hypothesis, - has a type o' such that

u' < 6. By hypothesis < is transitive, so a' < S. So the environment q[/' obeys

< and thus the result follows from the inductive hypothesis applied to E0 .

* The result follows directly from the inductive hypothesis for the other expressions.

58

U

The following lemma says that the possible results of a recursively defined function

in NOAL are related by _< to the function's nominal result type, provided the conditions

above are met.

Lemma 3.6.4. Let SPEC be a specification. Let NomSig be the nominal signature

map of SPEC. Let < be the -resumed subtype relation of SPEC. Let A be an algebra

whose signature is SIG(SPEC). Let F be a type-safe system of mutually recursive NOAL

function definitions. Let f be a function in F, the formals of f be X : S, the body of f

be the expression E, and let f have nominal signature S -4 T. Let q be an environment

whose domain is the Xi and whose range is A.

Suppose < is reflexive and transitive, and < is safe with respect to NomSig, and 77

obeys _<. Then each possible result of M[EI(A,77) has a type r _ T.

Proof: Let q E M[EI(A,r1) be a possible result. If q = I the result is trivial, so

suppose q : I. Pick a computation that produces q. Since q # 1, the computation

uses only finitely many calls, say n, to the fi. Expand E by replacing each call to a

function fi E F with its body and repeating this process on the resulting expression n

times and then replace all the remaining function calls with the expression bottom [S],

where S is the nominal result type of the replaced call. This process does not change the

nominal type of the resulting expression, and since there Ore no free function identifiers

that remain, the result follows from the previous lemma. I

Since each recursively defined function preserves our view of types as an upper bound,

each expression also preserves that view. So the following lemma differs from Lemma 3.6.3

in that no assumption is made about the environment's function identifiers.

Lemma 3.6.5. Let SPEC be a specification. Let NomSig be the nominal signature

map of SPEC. Let < be the presumed subtype relation of SPEC. Let E be a NOAL

expression of nominal type T whose set of free identifiers is X. Let A be an algebra whose

signature is SIG(SPEC). Let 77 E ENV(X, A) be an environment.

Suppose < is reflexive and transitive, < is safe with respect to NomSig, and t7 obeys

<. Then each possible result of M[E(A, ?I) has a type r < T.

59

Proof: By the previous lemma, if we extend i by binding the denotation of each
recursively defined function identifier that is free in E to its denotation in A, then the

extended environment obeys <. So by Lemma 3.6.3, the result follows. I

60

Chapter 4

Specifying Polymorphic Functions

In this chapter we describe a new method for the specification of functions that exploit

inclusion polymorphism.

We write specifications as if each argument and result has the specified type, and then

allow arguments and results to have types that are subtypes of the specified types. Our

specifications follow the practice of Trellis/Owl and other languages that allow instances

of subtypes to be used wherever instances of their supertypes can be used. An example

is the specification of sumFirst, found in Figure 1.4 on page 15. It specifies that the

arguments must be instances of a subtype of IntPair, but its effect is written using the

trait functions for the type IntPair. The advantage of this approach is that the syntax

and semantics of our specifications parallels that of the implementations. However, there

is no standard semantics for such specifications when the actual arguments do not have

the specified types.

We describe a semantics for such specifications. We know how to evaluate the asser-

tions that specify the effect of a function in an environment where each formal argument

identifier denotes an actual argument whose type is the same as the formal's nominal

type. We call such an environment a nominal environment. To evaluate an assertion

in an environment that is not nominal, one finds a nominal environment that the first

environment imitates, and uses the nominal environment to evaluate the assertion. We

define when one environment imitates another with respect to a set of observations, al-

lowing the first environment to be more deterministic with respect to each observation

in the set. We use this method for evaluating assertions to define satisfaction for NOAL

function specifications.

Our semantics is independent of the definition of subtype (given in Chapter 5), since

61

62

in this chapter we use binary relations on types without assumptions about what such a

relation means.

After describing the syntax of function specifications, we define evaluation of asser-

tions using the imitates relation and the semantics of polymorphic function specifications.

We then discuss the limitations of our approach, the problems in adapting our approach

to the specification of types with polymorphic operations, and why our semantics for

function specifications is plausible.

4.1 Syntax of Function Specifications

To specify NOAL functions we use syntax similar to that for operation specifications,

except that we use fun instead of ndop. That is, we give an operation name, a nominal

signature, a (requires clause) and an (effect clause); the latter two contain terms written

using trait function symbols (see Figure 2.4 for the syntax of terms).

Since an NOAL program is applicative, we also use this syntax to specify NOAL

programs.

The trait functions used in a function specification must be taken from a specification

of some abstract data types; we call the specification of these abstract types the referenced

specification. The referenced specification is explicitly named in function specifications

following the keyword uses (this is similar to Wing's specifications [Win83I, although we

are naming a specification of several abstract types instead of a trait).

For example, a specification we call is2waiting is given in Figure 4.1. The referenced

specification is MP, which specifies the types Mob (see Figure 2.6 on page 39) and PSchd

(see Figure 4.2).

The scheduler type PSchd (short for priority scheduler) is specified in Figure 4.2.

(The trait OrderedSet that is defined below in Figure 4.3, extends the standard set trait

Figure 4.1: The function specification is2waiting.

fun is2waiting(m:Mob) returns(b:Bool)
uses MP
requires true
effect b = (2 E m)

63

Figure 4.2: Specification of the priority scheduler type, PSchd.

PSchd immutable type
class ops [new] instance ops [ins, waiting?, next, empty?, leastFirst]
based on sort C from Pair

with [Bool for T1, OrderedSet with [int for T] for T2]

op new(c:PSchdClass, b:Bool) returns(p:PSchd)
effect m = (b, {})

op ins(p:PSchd, i:Int) returns(m:PSchd)
effect m = (p.first, p.second U {i})

op waiting?(p:PSchd, i:Int) returns(b:Bool)
effect b = i E p.second

op empty?(p:PSchd) returns(b:Bool)
effect b = (p.second = {)

op next(p:PSchd) returns(i:Int)
requires p.second # {}
effect i E p.second

& (p.first =€, lowerBound?(p.second,i))
& ((-'p.first) = upperBound?(p.second,i))

op leastFirst(p:PSchd) returns(b:Bool)
effect b = p.first

by adding the trait functions "lowerBound?" and "upperBound?".) The abstract values

of PSchd instances can be thought of as pairs, consisting of a boolean that tells the

priority order and an ordered set that contains the integers in the scheduler. The crucial

difference from Mob is that the next operation of a priority scheduler must return either

the least or the greatest integer waiting to be scheduled, with the priority determined by

the boolean that is fixed when the object is created. The leastFirst operation returns

the priority of a PSchd instance. If leastFirst (q) is true, then next(q) will return the

least element of q.

The precondition of is2waiting is "true" and the postcondition is "b = (2 E m)."

Since many specifications have a precondition of "true" we consider an omitted requires

clause to be syntactic sugar for a requires clause of the form "requires true."

64

Figure 4.3: The trait OrderedSet.

OrderedSet trait
imports Set
assumes Ordered
introduces

lowerBound?: C, T -- Bool
upperBound?: C, T -- Bool

asserts for all [s: C, i,j: TI
lowerBound?({},i) = true
lowerBound?(insert(sj),i) = ((i < j) & lowerBound?(s,i))
upperBound?({},i) = true
upperBouiid?(insert(sj),i) = ((i > j) & upperBound?(s,i))

The free identifiers of a function specification's precondition must be drawn from

the formal arguments of the function specification (e.g., m in the is2waiting example).

The free identifiers of the postcondition must be drawn from both the formal arguments

of the function specification and the formal result identifier (e.g., b in the is2waiting

example).

A term that sort-checks and only uses trait functions of the signature SIG(SPEC) of

a type specification SPEC is a SPEC-term. For example, the assertions in the function

specification is2waiting are MP-terms. A SPEC-term sort checks when the number

and sorts of arguments to trait functions match the signatures specified in the traits of

SPEC, and the only equations are between terms of the same sort. (An equation has

sort Bool.) There is no generic invocation that applies to terms, so sort-checking for

SPEC-terms is trivial. Therefore we can infer for each SPEC-term a nominal sort. Of

particular interest are terms of nominal sort Bool.

Definition 4.1.1 (SPEC-assertion). A SPEC-assertion is a SPEC-term of nominal

sort Bool.

4.2 Evaluation of Assertions

In this section we define the notion of when an algebra-environment pair models an

assertion with respect to a set of observations. This is done by finding a nominal algebra-

environment pair that the given pair imitates.

65

Formally, an environment r is nominal if and only if it obeys the identity relation on

types (=). We call an algebra-environment pair nominal if the environment is nominal.

In Chapter 2 we have described how to evaluate terms with free identifiers us-

ing a nominal environments, which in that chapter were called assignments. If r7A E

ENV(X, A) is a nominal environment, then - is its extension to a mapping from terms

to elements of the carrier set of A. Recall that iFA works by using the trait functions of

A to evaluate trait function applications and using r7A itself to evaluate free identifiers.

4.2.1 The Imitates Relation

In this subsection we define when one algebra-environment pair imitates another with

respect to a set of observations.

For soundness of reasoning, we want one algebra-environment pair to imitate another

only if there is no observation that distinguishes them.

A good notion of imitates for deterministic algebras is observable equivalence. We

say that the algebra-environment pair (C, Tie) is observably equivalent to (A, 7lA) with

respect to a set of obs'rvations OBS if and only if for all observations P E OBS with

free identifiers from some subset of X, P(C, 77c) = P(A, 7lA).

However, observable equivalence is too strong for nondeterministic algebras. For

nondeterministic algebras we want a definition of "imitates" that allows fewer possible

results, since in our view a specification only constrains behavior and does not completely

determine the exact set of possible results of a nondeterministic program. For example,

if we specify Lhat a procedure g returns an even number, then an implementation of g

can have as its set of possible results any nonempty subset of even numbers.

Definition 4.2.1 (imitates). Let OBS be a set of observations, C and A be E-algebras,

and X be a set of typed identifiers. Let ic E ENV(X,C) and 7A E ENV(X,A) be

environments. Then the pair (C, 77c) imitates (A, 77A) with respect to OBS if and only if

for all observations P E OBS with free identifiers from some subset of X, P(C, 'ic) C

P(A, 7A).

For example, consider MP-algebras C and A and environments 77c E ENV({x

66

Mob}, C) and 77A E ENV({x :Mob}, A) such that

M [next(x)](C, ic) = {1,2} (4.1)

M[next(x)(A,7A) = {1,2,3,4}. (4.2)

Then (C, ic) imitates (A, 77A) with respect to {next(x)}.

When the set of observations is fixed, we simply say that (C, 'ic) imitates (A, 27A)-

In general, the imitates relation with respect to a fixed set of observations is not

symmetric. However, we do have the following easy result.

Lemma 4.2.2. Let OBS be a set of observations. Then the imitates relation with

respect to OBS is reflexive and transitive. I

On the other hand, for deterministic algebras, the imitates relation is the same as

observable equivalence. For example, consider the IPT-algebra A presented in Figure 2.5

on page 38. Let X = {x : IntPair}. We define two environments il,772 E BNV(X,A)

such that 771(x) I' (1,2,3) and 772(x) 'dI (1,2). We claim that these environments axe

observably equivalent with respect to the set of observations described by the following

set of NOAL programs:

{first(x), second(x)}.

This claim is verified by considering the following sets of possible results:

M [first(x)](A,'7i) = {1} (4.3)

M[second(x)l(A,'ii) = {2} (4.4)

M first(x)](A,772) = {l} (4.5)

M[second(x)](A,772) = {2}. (4.6)

Whenever one algebra-environment pair does not imitate another with respect to a

set of observations, then there is some observation in that set that shows a difference.

However, if we think of running the program that defines an observation in a real imple-

mentation, we may have to wait forever to "see" the difference, because programs can

fail to halt and because we do not make assumptions about how the possible results of

67

nondeterministic operations are chosen. For example, consider MP-algebras C and A

and environments 7/c E ENV({x : Mob}, C) and r7A E ENV({x : Mob}, A) such that

M [next(x)l(C,rc) = {1,2} (4.7)

M[next(x)(A,rlA) = {1}. (4.8)

Then (C,r7c) does not imitate (A,rA) with respect to {next(x)}, but in a real imple-

mentation there is no guarantee that the result "2" will be produced in /c at any time.

The following facts about the how the imitates relation depends on sets of observations

will be useful when comparing different programming languages. They are similar to facts

about observable equivalence studied by others [ST85, Facts 2-31.

Lemma 4.2.3. Let OBS and OBS' be sets of observations. If OBS D OBS' and (C, 7/c)

imitates (A,r/A) with respect to OBS, then (C, 7/c) imitates (A, /A) with respect to OBS'.

I

That is, the imitates relation with respect to a larger set of observations is a subset

of the imitates relation with respect to smaller sets of observations. As an extreme

example, the imitates relation with respect to the empty set of observations relates all

algebra-environment pairs. In general, adding observations may allow one to observe

rTnre differences.

The following says that the imitates relation with respect to a set of observations

OBS is the intersection of the imitates relations with respect to all subsets of OBS.

Lemma 4.2.4. Let OBS = Uei, OBSi be a set of observations. If for each i E I, (C, 7/c)

imitates (A, /A) with respect to OBS,, then (C, /c) imitates (A, /A) with respect to OBS.

1

4.2.2 Models of Assertions

We now have all the tools necessary to define when an algebra-environment pair models

an assertion with respect to a set of observations.

Definition 4.2.5 (models). Let SPEC be a specification. Let OBS be a set of obser-

vations. Let P be a SPEC-assertion whose set of free identifiers is X. Let C be a SPEC-

algebra. Let Y be a set of typed identifiers such that X C Y. Let 7/c E ENV(Y, C) be an

68

OBS
environment. Then (C, 9c) models P with respect to OBS, written (C, ic) H P, if and

only if there is some SPEC-algebra A and some nominal environment r7A E ENV(Y, A)

such that (C,ic) imitates (A, rA) with respect to OBS and "-API = true.

Notice that the above definition works for all environments, not just those that obey

a subtype relation.

We say that (C, 7lc) models P and write (C, r7c) H P when (C, 77c) models the SPEC-

assertion P with respect to the set of all type-safe NOAL programs over the nominal

signature map and presumed subtype relation of SPEC.

As an example of our definition of "models" consider the MP-assertion "b = (2 E m),"

where b has nominal type Bool and m has nominal type Mob. Let B be an MP-algebra.

Let 77 E ENV({b,m}, B) be such that q/(b) = true and mn(m) is the only possible result of

M [ins(make(PSchd, false), 2)](B, 0). Then we have

(B,7) = b = (2 E m). (4.9)

This follows because there is some MP-algebra A and some nominal environment 71A E

ENV({b,m}, A) such that (B, 7) imitates (A, 7A) with respect to type-safe NOAL pro-

grams. One type-safe NOAL program is waiting?(m,2), which can have only one possi-

ble result, since waiting? is specified to be deterministic (in both Mob and PSchd). Since

M[waiting?(m,2)](B,7) = {true}, it follows that M[waiting?(m, 2)](A, 7A) = {true};

therefore by the specification of Mob, 1[(2 E m)) = true. Similarly, one can show that

?7A(b) = true. It follows that

Ti7[b = (2 E m)] = true. (4.10)

4.3 Semantics of Polymorphic Function Specifications

Now that we have a definition of when an algebra-environment pair models an assertion,

it is straightforward to define satisfaction for polymorphic function specifications. To

summarize, if the arguments model the precondition, then the function must halt and

return a result that models the postcondition. This is a "total-correctness approach" to

function specifications.

69

For concreteness, in this section we define when a NOAL function satisfies a function

specification with respect to the set of all type-safe NOAL programs over the referenced

specification. The generalization to other applicative programming languages is easy;

one uses the definition of "models" with respect to the set of programs for that language.

One can even define satisfaction with respect to a subset of a programming language by

using that subset as the set of observations.

Although NOAL uses lazy evaluation, we wish to avoid the complications of specifying

non-strict functions. Therefore, to define satisfaction we need only be concerned with

environments that are proper in the sense that no identifier denotes I.

Definition 4.3.1 (proper environment). An environment 17 is proper if and only if

for every identifier x in its domain, 77(x) 0 1 (i.e., 77(x) is proper).

We now define the semantics of NOAL function specifications.

Definition 4.3.2 (satisfies for NOAL functions). Consider the following function

specification:

fun f(iZ: S) returns(v : T)

uses SPEC

requires R

effect Q.

Let the presumed subtype relation of SPEC be <. Let X = {x, : Sl,...,x,, : S,,}.

A recursively-defined NOAL function named f of nominal signature S --+ T satisfies

the above specification if and only if for all SPEC-algebras C, for all environments

tc G ENV(X, C) such that q/c is proper and obeys <, the following condition holds. If

(C, ic) H R, (4.11)

then for all possible results q E M[f(i_)](C,77c),

q $I (4.12)

q ECu U < T (4.13)

(C, rlc [q/v]) Q. (4.14)

70

In the above definition, notice that the possible results must have some type that is a

presumed subtype of the nominal result type. This ensures that when a possible result is

bound to an identifier of the nominal result type, that binding obeys the presumed sub-

type relation of the referenced specification. We do not require that the implementation

be type-safe, although by using a type-safe implementation one can ensure that the type

constraint is met automatically.

Satisfaction for NOAL programs is analogous. However, since a NOAL program does

not have formal arguments, we also require that the free identifiers of the program be

the same as the formal arguments of the specification it satisfies.

As an example of satisfaction, the NOAL program

waiting?(m,2),

where m has nominal type Mob, satisfies the specification is2waiting given above. To see

this, let C be a MP-algebra, and let 7/c E ENV({m : Mob}, C) be an environment such

that 7c obeys the presumed subtype relation of MP and ilc(m). We trivially have that

(C, 7/c) = true, so the precondition is satisfied. Let r E M[waiting?(m, 2)](C,7c) be a

possible result. Then r is proper, has type Bool and is such that

(C, 7ic[r/b) 1= b = (2 Ei m). (4.15)

This last equation follows from the specification MP, but a formal proof requires the

techniques of Chapter 7.

4.4 Discussion

In this section we discuss some limitations of our approach to evaluating assertions,

the problems with using our approach to give a semantics to polymorphic operation

specifications, and the plausibility of our semantics.

4.4.1 Limitations of Our Techniques for Evaluating Assertions

Our approach to evaluating assertions is similar to the coercer functions found in Bruce

and Wegner's work [BW87]. (See Chapter 5 for a detailed comparison.) That is, we

"coerce" arguments to the nominal types of the formals and then evaluate the assertions.

71

Figure 4.4: Specification of the function ins3, which inserts 3 in a scheduler.

fun ins3(m:Mob) returns(m3:Mob)
uses MP
effect m3 = m U {3}

This coercion approach has limitations, although it works for many examples. To

illustrate the limitations, consider the function specification ins3, in Figure 4.4. An

obvious implementation is the following NOAL function:

fun ins3(m:Mob): Mob - ins(m,3).

Notice that if we pass this implementation an object of type PSchd, we get back an

object of type PSchd. However, neither the NOAL type system nor the type system of

our specification language can express this. One way to do so would be to use a kind of

bounded quantification [CW85]. For example we might write something like:

fun ins3(m:t _< Mob): t - ins(m,3).

This solves the problem with the type of the result, since we can conclude that if ins3

is passed an instance of PSchd, then it returns an instance of PSchd.

However, there is another problem with the coercion approach that is not related to

types. Notice that if we pass the denotation of new(PSchd,true) to the above imple-

mentation of ins3, we obtain an instance of PSchd whose abstract value is (true, {3}).

However, from the specification of ins3, an implementation can return an instance of

PSchd with abstract value (false, {3}). So our assertion language is not strong enough

to state that all other components of an object are unchanged.

Solving these problems is a matter for future work. One possible direction would be

to adapt the work of Jategaonkar and Mitchell on ML to specifications [JM88].

4.4.2 Polymorphic Operation Specifications

In this section we discuss the problems that arise in adapting our technique for specifying

polymorphic functions to the specification of polymorphic operations in a type specifi-

cation. (The type specification language described in Chapter 2 can only be used to

72

specify types with operations that are not polymorphic.) Since we do not have clear-cut

solutions for these problems, we leave these problems for future work.

The first problem is that our definition of when an algebra-environment pair models

an assertion relies on algebras that are known to satisfy a type specification, but we use

satisfaction for operation specifications in Chapter 2 to define when an algebra satisfies

a type specification. We could perhaps solve this problem by changing our definition of

when an algebra-environment pair models an assertion. For example, let Q be a SPEC-
OBS

assertion. Suppose we say that (C, rc) = Q if and only if either there is some nominal

(C,t7') such that (C,rqc) imitates (C,i7') with respect to OBS and 71'[Q] = true, or

there is some algebra A that is known to satisfy SPEC, and some nominal 77A such that

(C, 77c) imitates (A, 7A) with respect to OBS and i-[Q] = true. We could then give an

inductive definition of when an algebra satisfies its specification. Algebras that satisfy

each operation specification without reference to other algebras can be used as a basis

for showing tbat otber algebras satisfy the type specification.

The second problem is that we do not want to make the definition of when an algebra

satisfies a type specification dependent on a set of observations, as would be required by

the above "solution" to the first problem. It is not clear what set of observations should

be used to define satisfaction for operation specifications. For example, should programs

that use an operation g be considered as observations when defining satisfaction for an

implementation of g? Furthermore, it is not standard practice to define satisfaction for

a type specification with respect to a set of observations. Since we do not want the rest

of this dissertation to rest on a nonstandard definition of when an algebra satisfies a

specification, we leave these problems for future work.

4.4.3 Plausibility of Our Semantics for Specifications

Why are the above definitions the "right" notions of satisfies and models?

One test is that our definitions specialize to the standard ones when the presumed

subtype relation is the identity relation on types (=). The standard definition of when

a nominal algebra-environment pair (A, 77) models an assertion Q is that 7[Q] must be

true. It is trivial that if a SPEC-algebra and a nominal environment are such that the

extended environment maps a SPEC-assertion to true, then the algebra and environment

73

models that assertion, with respect to all sets of observations. However, the converse is

not true for all sets of observations. As an extreme example, every satisfiable assertion is

modeled by every algebra-environment pair with respect to the empty set of observations.

However, the converse does hold if the assertion is observable in the following sense.

To define observable assertions we first define the deterministic observations that

characterize their behavior in nominal environments.

Definition 4.4.1 (characteristic observation). Let OBS be a set of observations.

Let X be a set of typed identifiers. Let Q be a SPEC-assertion with free identifiers from

X. Then cQ E OBS is a characteristic observation for Q if and only if cQ is deterministic,

the free identifiers of cQ are also from X, and for all SPEC-algebras A and for all nominal

environments Yj E ENV(X, A),

(cQ(A, 77)= {b}) b). (4.16)

In an environment that is not proper, the right hand side of the above equation may

be 1. When this happens the characteristic observation must have I as its only possible

result.

It only makes sense to specify the behavior of a characteristic observation on nominal

environments, because only nominal environments can be used to evaluate assertions

directly. However, since a characteristic observation must be a member of OBS, it should

be thought of as the denotation of a program written using generic invocation. So we

think of a characteristic observation for Q as telling us the meaning of Q, not only for

nominal environments but for all environments.

Observable assertions have characteristic observations with respect to some set of

observations.

Definition 4.4.2 (observable assertion). Let OBS be a set of observations. Let X

be a set of typed identifiers. A SPEC-assertion Q is observable with respect to OBS if

and only if there is some CQ E OBS that is a characteristic observation for Q.

For convenience, we call a SPEC-assertion observable if it is observable with respect

to the set of all type-safe NOAL programs over the nominal signature map and presumed

74

subtype relation of SPEC. A characteristic observation for an observable assertion is thus

the denotation of a type-safe NOAL program.

For example, consider the specification MP (Mob and PSchd) and the MP-assertion

"2 E m" where m has nominal type Mob. This assertion is observable, since the type-safe

NOAL program waiting?(m,2) describes a characteristic observation for the assertion

"2 E m."

However, it is easy to write assertions that are not observable. For example, if one

specifies a type with a trait function that can give different results for observably equiva-

lent objects, then one can use that trait function to write assertions that are not observ-

able. Furthermore, if one specifies a type whose carrier set can have observably equivalent

objects with different representations, then the "=" operator of our specification language

can be used to write assertions that are not observable.

Often one uses non-observable assertions because they may give a more concise way

of stating the observable properties of an object than an observable assertion. However,

since we are ultimately interested in observable properties of specifications, we will often

make the simplifying assumption that all assertions are observable.

Our definition of "models" encompasses the standard one for observable assertions.

The following lemma states this precisely. It says that a SPEC-algebra and a nominal

environment model an observable SPEC-assertion with respect to a set of observations

according to our definition if and only if the pair models the assertion according to the

standard definition.

Lemma 4.4.3. Let SPEC be a specification. Let OBS be a set of observations. Let Q

be a SPEC-assertion whose free identifiers are a set X.

Suppose Q is observable with respect to OBS. Then for all SPEC-algebras B and for
OBS

all nominal environments rB E ENV(X, B), (B, 77B) - Q if and only if i-[Q] = true.

Proof. Suppose "-B[Q1 = true. Then since (B, riB) imitates itself with respect to
OBS

OBS, by definition (B, 77B) [= Q.
OBS

Conversely suppose that (B, 77B) h Q. By definition there is some SPEC-algebra

A and some nominal environment riA E ENII(X, A) such that (B,rB) imitates (A, 71A)

with respect to OBS and -j[Q] = true. Let cQ E OBS be a characteristic observation

75

for Q. Since (B, r7B) imitates (A, 17A) with respect to OBS, and the observation cQ is

deterministic, it follows that

CQ(B, r/B) = cQ(A, 1A). (4.17)

Since '"J[QJ = true

CQ(A,17A) = {true}. (4.18)

Therefore cQ(B, 77B) = {true}, and thus

VB[QI= true, (4.19)

since cq is a characteristic observation for Q. I

We can also use characteristic observations to test our defi nition of "models" for non-

nominal environments. The following theorem asserts that our definition of "models"

is right in the sense that whenever an algebra-environment pair models an observable

assertion with respect to a set of observations, then each characteristic observation for

that assertion has true as its only possible result.

Theorem 4.4.4. Let SPEC be a specification. Let OBS be a set nf observations. Let

Q be a SPEC-assertion whose free identifiers are a set X. Let B be a SPEC-algebra and

let 7B E ENV(X, B) be an environment.
OBS

If Q is observable with respect to OBS and (B, 77B) H Q, then for each characteristic

observation CQ E OBS for Q, cQ(B,r/s)- {true}.

OBS
Proof: Suppose that Q is observable with respect to OBS and (B, 77B) H Q. By def-

inition there is some SPEC-algebra A and some nominal environment 77A E ENV(X,A)

such that (B, r/B) imitates (A, 77A) with respect to OBS and !'A[Q] = true. Let Cq E OBS

be a characteristic observation for Q. Since (B, 77B) imitates (A, 77A) with respect to OBS,

and Cq is deterministic, it follows that

cQ(B, 77B) = cQ(A, 77A). (4.20)

Since 4[Qj = true and CQ is a characteristic observation for Q,

CQ(A,r/A) = {true}. (4.21)

76

Therefore

CQ(B,?1B) = {true}. (4.22)

I

The contrapositive of this theorem is important for testing. That is, if an imple-

mentation does not pass some test, then we can conclude that the implementation is

incorrect. For example, consider a program specification myProg with a trivial precon-

dition and referenced specification SPEC. Suppose that the postcondition of myProg

implies some observable assertion Q. (For example, the postcondition might be Q.) Let

cQ be a characteristic observation for Q, let C be a SPEC-algebra, and let ilc be an

environment that obeys the presumed subtype relation of SPEC. Suppose that we are

testing a NOAL program P and have found a possible result q E MI[PJ(C, tic) such

that cQ(C, 77c[q/v]) = {false}, where v is the formal result of the specification. By the

contrapositive of the above theorem, P does not satisfy the specification myProg.

The converse of the above theorem is also important for testing, since we want to

know when an implementation passes a test case that the implementation satisfies the

specification on that test case. Taking the above example again, if for some possible result

q, cQ(C, ilc[q/v]) = {true}, then we want to know that (C, 77c[q/v]) I Q. Although this

is not true for all environments, in the next chapter we define subtype relations so that

it is true whenever an environment obeys a subtype relation.

Another test for our definition of models for assertions is whether one's reasoning

using the usual laws of propositional calculus is still valid. For example, the law of
OBS OBS

the excluded middle would say that either (A, 17) = Q or (A, q) I- -,Q, but not

both. However, this does not hold in general. That is, if (A, 17) does not imitate some
OBS

nominal algebra-environment pair with respect to OBS, then neither (A, ,7) = Q nor
OB

(A, 7) = -,Q. However, if q obeys a subtype relation with respect to OBS, this cannot

happen, as we show in the next chapter.

Chapter 5

Subtype Relations

In this chapter we give our formal definition of subtype relations. We also discuss issues,

examples, and related work on subtyping.

To reason about programs that exploit inclusion polymorphism, we rely on nominal

type information. We write polymorphic function specifications as if each actual argu-

ment were an instance of the corresponding formal argument's nominal type. We also

verify programs by reasoning about expressions with nominal type T as if each possible

result was an instance of type T. For example, to verify that the NOAL function

fun sumFirst(plp2: IntPair): Int - add(first(pl),first(p2))

implements the specification of Figure 1.4 we reason in the body as if pl and p2 de-

note instances of IntPair, even we can pass instances of subtypes of IntPair (such as

IntTriple) as actual arguments to sumFirst.

To guarantee the soundness of reasoning based on nominal type information we ensure

that each instance of a subtype of some type T imitates some instance of type T and that

the possible results of each expression of some nominal type S are instances of some

subtype of S. This is the idea behind our formal definition of subtype relations. For

example, each instance of type IntTriple behaves like an instance of IntPair with the

same first and second components. By defining subtype relations so that whenever S < T,

each instance of type S cannot be observed to behave differently th. i some instance of

type T, if we verify some observable property by reasoning about instances of type T,

then the observable behavior of instances of type S will not be surprising.

Our formal definition of subtype relations is parameterized by a set of observations

and the semantics of a specification. We define subtype relations with respect to arbitrary

sets of observations, so that our definition can be used for many different programming

77

78

languages. We define subtype relations using the semantics of a specification, so that

we can treat subtype relations among abstract types. We can deal with incompletely

specified types, because we take as the semantics of a specification a set of algebraic

models. (That is, we take a loose view of specifications.) So our definition of subtype

relations is also independent of our specification language.

5.1 Definition of Subtype Relations

Our function specifications allow one to create environments that obey a binary relation

on types. The definition of subtype relations ensures that each such environment imitates

a nominal environment.

Definition 5.1.1 (subtype relation). Let E be a signature and let SPEC be a

nonempty set of E-algebras. Let OBS be a set of observations. Let < be a binary

relation on type symbols. Then < is a subtype relation on the types of SPEC with respect

to OBS if and only if for all algebras C E SPEC, there is some A E SPEC such that

for all sets of typed identifiers X and for all environments rc E ENV(X, C), if 77c obeys

<, then there is some nominal environment 77A E ENV(X, A), such that (C, 71c) imitates

(A, 7A) with respect to OBS.

A trivial example of a subtype relation on the types of a specification with respect

to a set of observations is the empty relation. Only slightly less trivial is the identity

relation on types; the identity relation is always a subtype relation because the imitates

relation is reflexive.

Consider the specification IPT presented in Figure 2.2. Let < be the smallest reflexive

relation on the types of IPT such that IntTriple < IntPair. Then < is a subtype

relation with respect to the following set of NOAL programs, where x : IntPair:

{first(x), second(x)}.

To see this, let C be an IPT-algebra, and let i7c E ENV(Y, C) be an environment

that obeys <. Let q12 E ENV(Y, C) be defined such that if 77c(x) is a proper instance of

IntTriple, then 12(x) is an instance of IntPair such that C#.fjt(r12 (x)) = C#.t(rc(X))

and C#.,..d(r72(x)) = C#..co,0 d(7c(x)). For all other identifiers, y E Y, let 772(y) = 1c(y).

79

Then (C, r'c) imitates (C, W2) with respect to the above set of NOAL programs, as is easily

checked.

On the other hand, a relation < such that IntPair < IntTriple is not a subtype

relation with respect to the set of type-safe NOAL programs over the nominal signature

map of IPT and <. To see this, consider the program

second(x) & (third(x) & empty(IntStream)),

where x : IntTriple. When this program is applied to an IPT-algebra and a nominal

environment that maps x to a proper value of type IntTriple, the only possible results

are streams consisting of two integers (e.g., (2,3) is the only possible result when the

result of make (IntTriple, 1,2,3) is bound to x). However, if this program is applied to

an IPT-algebra and an environment where the result of make (IntPair, 1,2) is bound to

x, then the partial stream (2, .L) will result, since applying the instance operation third

to an instanice of IntPair results in I. Therefore, such an algebra-environment pair

does not imitate a nominal algebra-environment pair, and hence this < is not a subtype

relation.

Notice how the set of observations makes a difference in the above example, because

with respect to the set of programs

{first (x), second(x) }

where x has type IntTriple, IntPair is a subtype of IntTriple.

In the rest of this section we show how our definition handles nondeterministic and

incompletely specified types.

5.1.1 Subtypes can be More Deterministic

In this subsection we present an example that shows how a subtype, PSchd, can be

more deterministic than its supertype, Mob. Therefore, by specifying a supertype with

nondeterministic operations, one leaves open implementation decisions that a subtype

can make.

The specification of the type Mob is given in Figure 2.6 on page 39. The elements of

the carrier set of Mob can be thought of as finite sets of integers "waiting" to be scheduled.

so

The ins operation produces a larger Mob object from an existing one by adding its integer

argument to the new Mob. The waiting? operation tests for membership in a Mob. The

empty? operation tests whether a Mob is empty. The next operation, when applied to a

nonempty Mob, is allowed to return any integer waiting in the Mob. Furthermore, the result

of applying next to an empty Mob is undefined. If B is a maximally nondeterrministic

Mob-algebra whose carrier set for the type Mob consists of finite sets of integers, and m is

a nonempty finite set of integers, then

BnextMobt (m) e m (5.1)

BnextMobInt ({ }) d BInt = {_ ,0, 1,_1,.... (5.2)

The scheduler type PSchd is specified in Figure 4.2 on page 63. It is similar to the

type Mob, except that its next operation returns either the least or the greatest integer

waiting to be scheduled, with the priority determined by the boolean that is fixed when

the object is created. The leastFirst operation returns the priority of a PSchd instance.

If B is a PSchd-algebra whose carrier set consists of pairs of booleans and sets of integers,

m is a nonempty finite set of integers, and b is either true or false, then we have

BnertPxcnt ((b, in))def f min(m) if b = true, (53)=- max(m) otherwise.
BneXtPSchd_Int({}) d' Blnt. (5.4)

Let MP be the specification that combines both Mob and PSchd. Let < be the smallest

reflexive relation on the types of MP such that PSchd < Mob. Let OBS be the following

set of NOAL programs, where x : Mob and i : Int

{waiting?(x, i), empty?(x), next(x)}.

Let C be an MP-algebra. Let A be an algebra that is the same as C, except that its

nextMob-.Int operation exhibits all the nondeterminism allowed by its specification. Then

A is an MP-algebra. Let 77c E ENV(X, C) be an environment. Then we can form an

environment r7A E ENV(X, A) such that (C, 77c) imitates (A,rA) with respect to OBS

as follows. For each y E X such that y has nominal type Mob and rnc(y) is a proper

instance of PSchd, we let Q(y) be an instance of Mob with the same elements; that is,

for all j E CInt, C#E#(rlc(y),j) is true if and only if A#E$(rA(y),j) holds. For all other

81

Figure 5.1: Specification of the deterministic scheduler type Crowd.

Crowd immutable type
class ops [new] instance ops [ins, waiting?, next]
based on sort C from Set with [int for T]

op new(c:CrowdClass) returns(m:Crowd)
effect m = {}

op ins(c:Crowd, i:Int) returns(m:Crowd)
effect m = c U {i}

op waiting?(c:Crowd, i:Int) returns(b:Bool)
effect b = i E c

op empty?(c:Crowd) returns(b:Bool)
effect b = (c = {})

op next(c:Crowd) returns(i:Int)
requires c $ {}
effect i E c

identifiers y' E X, let r7A(y') = r/c(y'). (This makes sense, because the carrier sets of A

and C are the same.) So < is a subtype relation on the types of MP with respect to

OBS.

5.1.2 Incompletely Specified Supertypes

In this subsection we show how our definition of subtype relations handles incompletely

specified t~pes. This example shows why our definition is based on the imitates relation

between algebra-environment pairs. The example also shows why we chose the particular

order of the quantifiers in the definition of subtype relations.

The specification of the type Mob is incomplete, since some algebras that satisfy that

specification are not observably equivalent.

Although the type Mob has maximally nondeterministic mo ls that in some sense

capture all the behavior of the specification, there are specifications for which no such

model exists. One such type is the deterministic scheduler type Crowd specified in Figure
5.1.

82

Figure 5.2: Subtype relationships among the scheduler types.

Mob

Crowd PSchd

The type Crowd is similar to the type Mob, except that whenever the instance operation

next is defined, it is required to be deterministic. For example, one Crowd-algebra is B " ,

whose nextcrowd-Iat operation returns the minimum of its argument set.

Let MCP be the specification that combines the specifications of Mob, Crowd, and

PSchd. Let < be the smallest reflexive relation < on the types of MCP such that Crowd <

Mob and PSchd < Mob. This relation is depicted in Figure 5.2.

To show that the relation < is a subtype relation, when we are given an environment

that obeys < we find a nominal environment that the given environment imitates by

using a different algebra. For example, let OBS be the following set of NOAL programs,

where x : Mob and i : Int

{waiting?(x, i), empty?(x), next(x)}.

As ip the previous section, if C is an MCP-algebra, ic E ENV(X, C), iC obeys _<, and

A is an MCP-algebra with the same carrier sets and trait functions as C but with a

nextmob-.Int operation that is as nondeterministic as its specification allows, then we can

form an environment 77A E ENV(X,A) such that (C,77c) imitates (A,r7A) with respect

to OBS. So < is a subtype relation on the types of MCP with respect to OBS. XVe

must be able to pick a different an algebra other than C, because the operations of C

may not be nondeterministic enough for us to find a nominal environment that a given

environment that obeys < imitates. Our definition of subtype relations forces us to pick

a single algebra A for each C, so that we can reason about an entire program u'sing the

same algebra A as a model, without changing algebras for each expression.

83

Let us consider why we do not want a relation on types such that PSchd 5 Crowd

to be a subtype relation with respect to type-safe NOAL programs over the nominal

signature map of MCP and <. Let r7 be an environment defined so that the result of

new(PSchd,true) is bound to xl and the result of new(PSchd,false) is bound to x2,

where xl and x2 are both of nominal type Crowd. Consider the following program:

fun bool2int(b: Bool): Int = if b then 1 else 0 fi;

bool2int(empty?(xl)) & (bool2int(empty?(x2))

& (next(ins(ins(x1,1),2)) & (next(ins(ins(x2,1),2))

& empty(IntStrean)))).

In the environment 77, the only possible result of this program is the stream (1, 1, 1,2). In a

nominal environment, however, the objects bound to xl and x2 must be instances of type

Crowd. Clearly, the denotations of xl and x2 in a nominal environment must be empty

Crowds if the result of the above program is to be (1, 1, 1,2). Using the specification

of the trait Set [GH86a, Page 1461, whose proper elements are generated by the trait

functions {} and "insert" and are partitioned by the trait function E, we can conclude

that if the denotations of xl and x2 are empty instances of Crowd, then they must be the

same object and therefore that ins(ins(xl, 1) ,2) and ins(ins(x2,1) ,2) must denote

the same object. Therefore, since the next operation of Crowd is deterministic, the last

two elements of the stream must be either both 1 or both 2. So presuming that PSchd is

a subtype of Crowd would lead to surprising results. Another way to look at this is that

the behavior of these two PSchd objects is surprising when they are thought of as Crowd

objects.

Our definition prevents a relation on types such that PSchd < Crowd from being a

subtype relation, because we use imitates for algebra-environment pairs. This allows us

to observe more than one object a". a time. Although each individual instance of PSchd

"acts like" some instance of Crowd, in general these instances of Crowd must be from

different algebras. For example, the PSchd object created by new(PSchd,true) acts like

the Crowd object created by new(Crowd) in B" ln, since it has the same responses to

type-safe NOAL programs that observe it through an identifier of nominal type Crowd.

Similarly, the PSchd object created by new(PSchd,false) acts like the Crowd object

created by new(Crowd) in Bm'. As we saw above, we cannot treat both empty PSchd

84

objects as if they were instances of type Crowd, because taken together they do not

act like Crowd objects. Therefore, a correct characterization of subtype relations using

relationships among objects, such as the one given in the next chapter, requires some

"bundling" of the object relationships to properly distinguish between PSchd and Crowd.

5.2 Reasoning about Environments that obey a Subtype Re-
lation

Because our method for evaluating assertions (see Chapter 4) relies on the imitates

relation and nominal environments, there are several ways in which standard reasoning

could fail. For example, our method of evaluating assertions might be ,ambiguous, proof

by contradiction might be invalid, and we might not be able to conclude that if P and

P => Q hold, then Q holds. In this section we show that none of these possibilities can

happen if we limit ourselves to reasoning about observable assertions and environments

that obey a subtype relation with respect to sufficiently large set of observations. The

results of this section -omplete the plausibility arguments of the last chapter and are

used in proving the soundness of our verification techniques.

A fundamental pitfall in our definition of models for assertions is that it might be

possible for an assertion to be both true and false, or neither true nor false. In the

following lemma we show that observable assertions cannot be both true and false.

Lemma 5.2.1. Let SPEC be a specification. Let OBS be a set of observations. Let Q

be a SPEC-assertion whose set of free identifiers is X. Let B be a SPEC-algebra and

let 77B E ENV(X, B) be an environment.

Suppose that cQ E OBS is a characteristic observation for Q and c-Q E OBS is a

characteristic observation for -,Q. If (B, 7B) models Q with respect to OBS then (B, 7B)

does not model -,Q with respect to OBS, and furthermore if (B,r'B) models -'Q with

respect to OBS then (B, ??B) does not model Q with respect to OBS.

OBS OBS
Proof: Suppose for the sake of contradiction that (B,r7B) = Q and (B,rB) [=

-'Q. By definition, there is some SPEC-algebra A and some nominal environment 71A E

ENV(X, A) such that (B, 7B) imitates (A,r7A) with respect to OBS and

IQ1 = true. (5.5)

85

By Theorem 4.4.4,

cQ(B,77B) = {true} (5.6)

C.Q(B,7B) = {true}. (5.7)

Since c-,Q E OBS,

C.Q(A,77A) = {true}. (5.8)

Since r7A is nominal, by definition of characteristic observation

i1A QI = true. (5.9)

But this is a contradiction to the definition of evaluation in nominal environments. I

The above lemma rules out an observable assertion being both true and false, but it

does not guarantee that an assertion is either true or false. For example, if an environment

does not imitate a nominal environment, then an assertion may be neither true nor false

in that environment. However, by restricting our attention to proper environments that

obey a subtype relation and sets of observations that can test whether an environment

is proper, we can show that the law of the excluded middle holds, as in the following

theorem.

Theorem 5.2.2. Let SPEC be a specification. Let OBS be a set of observations. Let <

be a binary relation on the types of SPEC. Let Q be a SPEC-assertion whose set of free

identifiers is X. Let B be a SPEC-algebra and let r7B E ENV(X,B) be an environment.

Suppose that < is a subtype relation on the types of SPEC with respect to OBS,

r/B is proper, 77B obeys -<, cq E OBS is a characteristic observation for Q, cQ E OBS

is a characteristic observation for -,Q, and for all SPEC-algebras A and for all nominal

environments 7A E ENV(X, A), if (B,r/B) imitates (A,r/A) with respect to OBS, then
OBS OBS

1
7 A is proper. Then either (B,i7B) H= Q or (B,r/B) 1= -,Q, but not both.

Proof: Since r7B obeys < and < is a subtype relation, there is some SPEC-algebra A

and some nominal environment 'rA E ENV(X, A) such that (B, 77B) imitates (A, 'IA) with

respect to OBS. By hypothesis 77A is proper. So either I'A4QJ = true or -i[QI = false.

86

OBS OBS
So by definition, either (B,rmB) Q or (B, rB) = -,Q. By the previous lemma it

cannot be both. I

So for environments that are proper and obey a subtype relation, we can think of our

definition of models for assertions as assigning a single truth value to each observable

assertion.

We also want to show that we can reason about environments that obey a subtype

relation using the other propositional connectives. To prove the validity of the usual laws

that govern the other propositional connectives, we first need to tie the truth value of an

assertion in an environment to all the nominal environments it imitates. This is done by

the following two lemmas.

The following lemma is a direct consequence of our technique for evaluating assertions

and the transitivity of the imitates relation. It says that an algebra-environment pair

models each assertion modeled by an algebra-environment pair that it imitates.

Lemma 5.2.3. Let SPEC be a specification. Let OBS be a set of observations. Let P

be a SPEC-assertion with free identifiers from X. Let C and A be SPEC-algebras. Let Y

be a set of typed identifiers such that X C Y. Let 77c E ENV(Y, C) and 77A E ENV(Y, A)

be environments.
OBS OBS

If (C, 77c) imitates (A, 77A) with respect to OBS and (A, 77A) = P, then (C, 77c) k P.
I

We also need something like a converse to the above lemma. The following lemma is

nearly the converse to the above, but the hypothesis is stronger, since the assertion must

be observable and the imitated environment mu.st be nominal.

Lemma 5.2.4. Let SPEC be a specification. Let OBS be a set of observations. Let R

be a SPEC-assertion whose set of free identifiers is X. Let C and A be SPEC-algebras.

Let 77c E ENV(X, C) and 77A E ENV(X, A) be environments.

If R is observable with respect to OBS, 77A is nominal, (C, 77c) imitates (A, 77A) with
OBS OBS

respect to OBS, and (C, 7ic) 1= R, then (A, 77A) = R.

Proof: Suppose that R is observable with respect to OBS, 7'A is nominal, (C,77c)
OBS

imitates (A,r7A) with respect to OBS, and (C,i7c) = R. Since R is observable with

87

respect to OBS, there is some characteristic observation CR E OBS for R. By Theo-

rem 4.4.4, CR(C,'qc) = {true}. Since (C,iqc) imitates (A, 77A) with respect to OBS, and

since cR is deterministic,

CR(C, qc) = CR (A, ?IA). (5.10)

085
Since CR is a characteristic observation and r/A is nominal, (A, ,qA) H R. I

The following theorem says that the usual way one reasons about implication is valid

for environments that obey a subtype relation.

Theorem 5.2.5. Let SPEC be a specification. Let OBS be a set of observations. Let

P and Q be SPEC-assertions. Let X be a set of typed identifiers that contains the

free identifiers of P and Q. Let C be a SPEC-algebra and let q'c E ENV(X, C) be an

environment.

Suppose that < is a subtype relation on the types of SPEC with respect to OBS,

that -,P, Q, and P =0 Q are observable with respect to OBS, and that 77c obeys <.
OBS OBS OBS

Then (C, 77c) = P : Q if and only if either (C, i'c) H -,P or (C, 2c) H Q.

Proof: Since < is a subtype relation and ;?c obeys <, there is some SPEC-algebra

A and some nominal environment r7A E ENV(X, A) such that (C, 'ic) imitates (A, 77A)

with respect to OBS.
CBS

Suppose that (C, 77c) H P =. Q. Since P =:> Q is observable with respect to OBS

and r7A is nominal, by Lemma 5.2.4,

OBS(A, 77A) P =>, Q.511

So by Lemma 4.4.3,

'I[P =- QJ = true. (5.12)

So by the definition of evaluation in nominal environments, either --- Pj = true or
OBS OBS

iqA[QI = true. So by definition, either (C, 77c) H -,P or (C,77c) - Q.
OBS

Suppose that (C, 'ic) H -P. Since -,P is observable with respect to OBS and 9JA is

nominal, by Lemma 5.2.4,

OBS(A, rJA) H -'P. (5.13)

88

So by Lemma 4.4.3,

A = true. (5.14)

So by the definition of evaluation in nominal environments, TA-J[P =* Q] = true, and
OBS

hence (C, 77c) = P => Q by definition.
OBS OBS

Similarly, if (C,iqc) = Q, then (C,trc) H P = Q. I

Since the set {-,, =} is a complete set of propositional connectives, our usual rea-

soning about observable assertions is valid in proper environments that obey a subtype

relation with respect to a sufficiently large set of observations. For example, standard

reasoning about observable assertions in environments that obeys a subtype relation with

respect to the set of type-safe NOAL programs is valid, because the NOAL programs of

the form isDef? (x) ensure that a proper environment can only imitate another proper

environment.

Another strange aspect of our definition of models is the way the truth of an assertion

in a given environment seems to depend on all the bindings in that environment. This

is because the imitates relation depends on all the bindings in an environment and not

just those used in some assertion. We show in the following lemma that if we shrink

the domain of an environment to excise some identifiers that do not occur free in an

assertion, then the truth value of that assertion in the environment is unchanged.

Lemma 5.2.6. Let OBS be a set of observations. Let SPEC be a specification. Let C

be a SPEC-algebra. Let Q be a SPEC-assertion whose set of free identifiers is X. Let

77c E ENV(X, C) be an environment. Let q E CTyPES be a tuple of objects from the

carrier set of C, and let :Z be a tuple of typed identifiers, none of which is il X.
OBS OBS

If (C, irc[W/z) Q, then (C,r1) ,= Q.

OBS
Proof: Suppose that (C, qc[j/,]) Q. By definition there is some SPEC-algebra A

and some nominal environment 71A[Y/z such that (C, rlc[r1/.]) imitates (A, rlA[F/Z) with

respect to OBS and qA[F/ZIQI = true. Since the z, do not occur free in Q, AJ[QJ = true.

Furthermore, (C, 77c) imitates (A, rlA) with respect to OBS. So by definition (C, 77c) H Q.

I

If we extend an environment by adding some binding, we may not be able to conclude

that an assertion that held in the original environment still holds, because the extended

89

environment may not imitate a nominal environment. But if the extended environment

obeys a subtype relation and the assertion is observable, then the truth value of the

assertion is unchanged, as we show in the following lemma.

Lemma 5.2.7. Let OBS be a set of observations. Let SPEC be a specification. Let C

be a SPEC-algebra. Let P be a SPEC-assertion whose set of free identifiers is X. Let

< be a binary relation on the types of SPEC. Let f7x E ENV(X, C) be an environment.

Let Y be a set of typed identifiers such that X C Y. Let iqy E ENV(Y, C) be an

environment such that for all x E X, r7y(x) = r7x(x).
OBS

If (C, r/x) = P, 77y obeys <, < is a subtype relation on the types of SPEC with
OBS

respect to OBS, and P is observable with respect to OBS, then (C, 77y) = P.
OBS

Proof: Suppose that (C, 77X) 1= P, qy obeys <, < is a subtype relation on the

types of SPEC with respect to OBS, and P is observable with respect to OBS. Since

< is a subtype relation, there is some SPEC-algebra A and some nominal environment

r', E ENV(Y, A) such that (C,r7y) imitates (A,r17') with respect to OBS. Let r be r'

restricted to X. Then (C, 77x) imitates (A,rq) with respect to OBS. Since the set of

free identifiers of P is X,

TP] = IAP (5.15)
OBS OBS

Since P is observable, (C, rx) 1= P, and (A, q') is nominal, by Lemma 5.2.4 (A, ')
OBS

P. So by Lemma 4.4.3, Jx[Pj = true. So Tj4 [P] = true and thus (A,i4) 7 P. Since
OBS

r/y' is nominal, by Lemma 5.2.3 (C, 77y) k P. 1

5.3 Discussion

In this section we first discuss several aspects of subtype relations. We show how subtyp-

ing varies with observations. We discuss the meaning of tests on environments that obey

a subtype relation and a strategy for testing functions that exploit inclusion polymor-

phism. Finally we discuss the degrees of freedom one has when designing a collection of

types to ensure certain subtype relationships. We have discussed nondeterministic and

incomplete specifications above. Continuing this discussion, in the final subsections of

this section we discuss how the preconditions of operations (requirements), exceptions,

and virtual types affect subtype relations.

90

5.3.1 How Subtyping Varies with Observations

Like the imitates relation, whether a binary relation on types is a subtype relation varies

with the observations one makes. As a trivial example, every binary relation on types

is a subtype relation with respect to the empty set of observations. If a feature is

added to one's programming language, then some binary relations on types may cease

to be subtype relationships with respect to programs written in the new programming

language. -lowever, if we remove a feature from a language, by the following lemma, old

subtype relations are still subtype relations with respect to the smaller language.

Lemma 5.3.1. Let SPEC be a set of E-algebras. Let OBS and OBS' be sets of obser-

vations.

If OBS D OBS', then all subtype relations on the types of SPEC with respect to

OBS are also subtype relations with respect to OBS'. I

One way to handle an enlarged programming language is suggested by the following

lemma. If one knows that < is a subtype relation on the types of SPEC with respect

to OBSI, then to verify that < is a subtype relation with respect to OBS1 U OBS2 one

merely has to verify that < is a subtype relation with respect to OBS2.

Lemma 5.3.2. Let SPEC be a set of E-algebras. Let OBS = ,jej OBS, be a set of

observations.

If for each i E I, < is a subtype relation on the types of SPEC with respect to OBSj,

then < is a subtype relation on the types of SPEC with respect to OBS. I

We will have more to say about how certain features of programming languages affect

subtype relations in Chapter 9.

5.3.2 Testing Functions that use Subtypes

In this subsection we show that the results of test cases have the usual meaning for func-

tions that use inclusion polymorphism and we offer a strategy for testing such functions.

91

At the end of Chapter 4 we showed that if an implementation does not pass a test

case, then the implementation is incorrect. We will now show that the converse holds:

if an implementation passes a test case we can then conclude that the implementation

satisfied its specification for that test case. For example, suppose we make the following

call to an implementation of sumFirst

sumfirst(make(IntPair,1,2), make(IntTriple,4,5,6))

and the implementation returns 5. This is what we expect from the specification given

in Figure 1.4, because the only possible results of

first (make(IntPair, 1,2))

and

first (make(IntTriple,4,5,6))

are 1 and 4 (respectively). We want to conclude that the implementation satisfies its

specification for this test case. This conclusion is valid because we can observe that the

result of our test is 5 and that the first components of the two arguments are 1 and 4

(respectively).

We can model a test case as the characteristic observation for a function specification's

postcondition. The following lemma says that in an environment that obeys a subtype

relation, whenever a characteristic observation for the postcondition returns true, the

implementation satisfies its specification on that test case.

Lemma 5.3.3. Let SPEC be a specification. Let OBS be a set of observations. Let Q

be a SPEC-assertion whose set of free identifiers is X. Let B be a SPEC-algebra and

let iB E ENV(X, B) be an environment.

If CQ E OBS is a characteristic observation for Q, is a subtype relation on the types
OBS

of SPEC with respect to OBS, ?ib obeys <, and cQ(B, r7B) = {true}, then (B, 7B) = Q.

Proof: Suppose that cQ E OBS is a characteristic observation for Q, _5 is a subtype

relation on the types of SPEC with respect to OBS, 77B obeys <, and cQ(B, 77B) = {I,.u }.

Since < is a subtype relation with respect to OBS, there is some SPEC-algebra A and

92

some nominal environment 7
7A E ENV(X, A) such that (B, 77B) imitates (A, 77A) with

respect to OBS. Since cQ E OBS,

cQ(B,'iB) = {true} = cQ(A, 77A). (5.16)

Since by definition Q is observable and since 7A is nominal, by Lemma 5.2.4 we have
OBS

(A,'7A) 1= Q. Since (B, 71B) imitates (A,'7A) with respect to OBS, by Lemma 5.2.3,
OBS

(B,'iB) 1= Q. I

One implication of the above lemma is that we can use instances of subtypes for test

data and interpret the results of such tests normally. This raises the question of whether

one should use instances of subtypes for test data. The question of what test data to

use is important, because during testing one is always faced with limited resources (e.g.,

time and computers) and so one must make trade-offs among test cases.

A useful test strategy for testing functions that use inclusion polymorphism is to

concentrate on nominal test data instead of using instances of subtypes for test data.

The reason is that if it can be shown by some test that a function does not meet its

specification, then this problem can be uncovered by a test that uses arguments that are

instances of the function's nominal argument types. Furthermore, since a subtype might

only exhibit some but not all of the behavior of its supertypes, testing with instances

of a subtype might fail to uncover certain bugs. For the same reason, when testing a

function it is wise to use an implementation of each type that is as nondeterministic as

the specification of that type allows.

5.3.3 Subtypes can have Weaker Requirements

Our definition of subtype relations also allows a subtype to be more defined than its

supertypes, in the sense that the subtype's requires clause may be weaker. For example,

consider the type PSchd2, where PSchd2 is exactly like PSchd except that the next

operation is specified as in Figure 5.3. This specification says that when the argument

to next is empty, the only possible result is 0. Let P2 be the specification that combines

PSchd and PSchd2. Then the smallest reflexive relation < on the types of P2 such that

PSchd2 < PSchd is a subtype relation with respect to the following set of NOAL programs:

{next(x), waiting?(x, i), leastFirst(x)}

93

Figure 5.3: Specification of the type PSchd2, which is more defined than PSchd.

PSchd2 immutable type
class ops [new] instance ops [ins, waiting?, next, leastFirst]
based on sort C from Pair

with [Bool for T1, OrderedSet with [Int for T] for T2]

% new, ins, waiting?, empty?, leastFirst as in Figure 4.2.

op next(p:PSchd2) returns(i:Int)
effect ((p.second = {}) =,' i=O)

& ((p.second 4 {}) = i E p.second)
& (p.first = lowerBound?(p.second,i))
& ((-'p.first) =o upperBound?(p.second,i))

where x : PSchd and i : Int. This follows because if C is a P2-algebra and -q is an environ-
ment such that ir(x) denotes an empty instance of PSchd2, then M[next(x)](A, r7) = {0}.
But if A is a maximally nondeterrninistic P2-algebra and r7A(x) denotes an empty instance
of PSchd, then M Inext(x)](A, 7) = {_1,0, 1- 1....

Allowing a subtype to be more defined seems right, since the idea of a requires clause
is to leave the behavior of an operation undefined when the precondition is not met.

5.3.4 Exceptions and Subtyping

Instead of specifying operations with nontrivial preconditions or arbitrarily defining a
result, as was done for PSchd2, another way of dealing with boundary conditions is to

specify that an operation should signal an exception.

94

In this subsection, we again consider operation specifications to be syntactic sugar

for operation specifications that return instances of a OneOf type (see Chapter 2). For

example, when the specification of the type Mob2 given in Figure 2.8 on page 41 says that

the next operation signals "empty(nil)" when it is passed an empty instance of Mob2, we

mean that it returns the result of

make-empty (OneOf Enormal: Int, empty:Null], nil(Null))

when it is passed an empty instance of Mob2. Consider the specification MM2 that

incorporates both our original Mob type and the type Mob2. Let < be a relation on type

symbols such that Mob2 < Mob. Then < is not a subtype relation on the types of MM2

with respect to type-safe NOAL over the nominal signature map of MM2 and <. This

is because exceptions are distinct from normal results. For example, let x have nominal

type Mob. In an environment where x is bound to the result of new(Mob2), the only

possible result of the program

value [Bool] (empty?(x),normal)

& (hasTag?(next(x) ,normal) & empty(BoolStream))

is the stream (true,false), since the result of next(x) is a Oneof with the tag empty

in this environment. This is not possible in a nominal environment, since the result of

next (x) can only have tag normal. So although we said that the result of next when

applied to an empty instance of Mob is "undefined," there are certain things that an

implementation of Mob cannot do, such as signalling an exception. The type declarations

in a specification are enforced even if a requires clause is not satisfied'. Therefore,

for each instance operation, a subtype cannot have more exceptional results than its

supertypes.

The program exhibited in the above example also shows that Mob is not a subtype

of Mob2. However, a subtype can have fewer exceptional results than its supertype if

the supertype's specification allows a nondeterministic choice between signalling and

returning normal results. For example, consider the type Mob3 as specified in Figure 5.4.

The next operation of Mob3 has a requires clause, like Mob, but its signature allows the

'These type declarations are enforced because our definition of algebras and their operation- precludes

type violations.

95

Figure 5.4: Specification of the scheduler type Mob3.

Mob3 immutable type
class ops [new] instance ops [ins, waiting?, next]
based on sort C from Set with [int for T]

% new, ins, waiting? empty? as in Mob and Mob2.

ndop next(m:Mob3) returns(i:Int) signals(empty(Null))
requires m {}
effect i E m

operation to signal, like the next operation of Mob2. Therefore, the next operation of

Mob3 can return any element of the carrier set of OneOf [normal: Int, empty: Null]

when the requires clause is not satisfied.

Let M3 be a specification that combines the types Mob2 and Mob3. Let < be the

smallest reflexive relation on the types of M3 such that Mob2 < Mob3. Let OBS be the

following set of NOAL programs, where x : Mob and i : Int

{waiting?(x, i), empty?(x), next(x)}.

Then < is a subtype relation with respect to OBS. This is another instance of a subtype

being more defined than its supertypes.

We can also show that the type Mob, which has fewer exceptional results, is a subtype

of Mob3. Let M4 be a specification that combines the types Mob and Mob3.

To understand why Mob is a subtype of Mob3 we need to understand the subtype

relationships on the OneOf types that we use to model exceptions.

A specification of the type OneOf [normal: Int, empty: Null] is given in Figure 5.5,

where the type name is abbreviated to NE and we have taken the liberty of using special

syntax for defining the set of instance operations named value [T] for types T. The trait

used to define the carrier set and trait functions of this type is found in Figure 2.7 on

page 40. The specification of OneOf [normal:Int] is similar.

There are other ways to specify OneOf types so that OneOf [normal : I't] is a subtype

of OneOf [norknal: Int, empty: Null]. We could include in our programming language

built-in expressions for observing OneOf instances [LAB*S1, Section 11.6] [CW85] [CarS4].

96

Figure 5.5: Specification of the type NE =One~f[normal: Int, empty: Null].

NE immutable type
class ops [make-.normal, make-.empty]

instance ops [hasTag?, value[T]
based on sort NE from One~f[normal: Int, empty: Null]

op make-.normal(c:NEClass, i: Int) returns(o:NE)
effect o = niake.-iormal(i)

op make-.empty(c:NEClass, n: Null) returns(o:NE)
effect o = make-empty(n)

op hasTag?(o:NE, t: Tag) returns(b:Bool)
effect b = hasTag?(o, t)

op valuelTI(o:NE, t: Tag) returns(r:T)
requires hasTag?(o, t)

& ((t =normal) I mt =T)

& ((t =empty) Null =T)

effect ((t = normal) ~r = val-normal(o))
&((t = n 2) - r =val-empty(o))

97

We could specify value-ni operations for each tag ni, and limit the set of observations so

that each value.ni operation can only be invoked on instances that are known to have the

tag ni [vWMP*77]. These choices lead to the appropriate subtype relationship, since they

all allow an observation intended for an instance of oneof [normal: Int, empty: Null] to

be applied to an instance of OneOf [normal: Int] without surprises. The alternative we

have adopted has the advantage of allowing Onetf types to be specified without adding

special features to a programming language.

Let < be the smallest reflexive relation on the types of M4 such that Mob < Mob3 and

OneOf [normal : Int] _< OneOf [normal : Int, empty : Null].

Let OBS be the following set of NOAL programs, where x : Mob3, i : Int, o

OneOf[normal : Int, empty : Null], and t : Tag,

waiting?(x, i), empty?(x), value[Int](next (x), normal),
hasTag?(o, t), value[Int](o, normal)

Let C be an M4-algebra and let 7ic E ENV(X, C) be an environment that obeys <. Let

A be an M4-algebra with the same carrier sets and abstract functions as C but with

a maximally nondeterministic nextXOb3-.Irt operation. Define the environment r7A E

ENV(X, A) as follows. If tic(x) is a proper instance of Mob, then let r/A(x) be an instance

of Mob3 in A with the same elements; that is, for all j E C1 nt, C#E#(ric(x),j) is true if

and only if A#E# (7A(x),j) holds. If ic(o) is a proper instance of OneOf [normal: Int],

then let r7A(o) be an instance of Oneff[normal:Int, empty:Null] in A with the same

tag (normal) and value. Otherwise for all y E Y, let tiA(y) = 77C(y). It is straightforward

to show that (C, 7ic) imitates (A, 77A) with respect to OBS. Thus < is a subtype relation

on the types of M4 with respect to OBS.

In general a subtype (such as Mob) can have fewer exceptions than its supertypes

(such as Mob3), because a OneOf type with fewer tags can be a subtype of a Oneff type

with the same tags and more (as noted by Cardelli [Car84]).

5.3.5 Virtual Supertypes

In many practical examples of object-oriented design, one specifies types without class

operations to be used as supertypes. Since these types do not have class operations they

98

Figure 5.6: The specification Vehicles, including types Vehicle and Bicycle.

Vehicle virtual type
instance ops (wheels, passengers]
based on sort C from Vehicle

op wheels(v -Vehicle) returns(i:Int)
effect i :- wheels(v)

op passengers(v:Vehicle) returns(i:Int)
effect i = passengers(v)

Bicycle immutable type
class ops [new] instance ops (wheels,passengers,maker]
based on sort String from CharString

op make(BicycleClass, s:String) returns(b:Bicycle)
effect b = s

op wheels(b:Bicycle) returns(i:Int)
effect i = 2

op passengers(b: Bicycle) returns(i:Int)
effect i = 1

op maker(b:Bicycle) returns(s:String)
effect s = b

cannot be instantiated. We call a type that cannot be instantiated a virtual type, since its

implementations often use virtual operations. A virtual operation has an implementation

that uses some primitive (called virtual in Simula 67 [DMN70] [BDMN73]) to invoke

an operation of a subclass 2; hence a virtual operation cannot be executed unless the

subclass has defined the required operation.

Consider the specification Vehicles, given in Figure 5.6. In this specification, Vehicle

is a virtual type and has no class operations. The carrier set for Vehicle is described in

the trait Vehicle found in Figure 5.7.

We will now show informally that the smallest reflexive relation < on the types of

2 -rn. researchers (e.g., [SCW85, Page 42] [Sym84, Page 450]) call a type or class that cannot be
instantiated "abstract," but this leads to confusion with the term "abstract data Lype."

99

Figure 5.7: The trait Vehicle that describes the abstract values of Vehicle.

Vehicle trait
introduces

wheels: C --+ Int
passengers: C - Int

asserts for all [v: C]
wheels(v) > 1
passengers(v) > 1

Vehicles such that Bicycle < Vehicle is a subtype relation with respect to the set of

observations OBS defined by the NOAL programs wheels (x) and passengers (x), where

x has nominal type Vehicle. Let C be a Vehicles-algebra and let 77c E ENV(X, C) be an

environment that obeys <. Let A be a Vehicles-algebra with the same carrier set for all

types as C, except that we add an element q to the carrier set of Vehicle if necessary with

the property that Awhee(q) = 2 and Apaaenser(q) = 1. We define a nominal environment

17A E ENV(X, A) as follows. Suppose -qC(x) is a proper element of type Bicycle; then

let 77A(X) be the instance q E Avehicle that by assumption is such that Awhe,(q) = 2 and

Apaanger,(q) = 1. Otherwise, for all other y E X, let ?/A(Y) = 77c(y), which makes sense,

since the carrier sets for C are subsets of those for A. Then (C, 77C) imitates (A, 77A) with

respect to OBS, because if 77c maps the identifier x of nominal type Vehicle to a proper

instance of type Bicycle, then

Mlwheels(x)](C,ic) = {2} (5.17)

M[passengers(x)](C,'Ic) = {1} (5.18)

M[wheels(x)](A,lA) = {2} (5.19)

M[passengers(x)](A,77A) = {1}. (5.20)

So Bicycle is a subtype of Vehicle.

5.4 Other Definitions of Subtype

In this section we compare our definition of subtype relations with other notions of

subtyping.

The major difference is that our definition is based on the semantics of abstract data

100

types, which allows us to deal with incompletely specified types and with nondeterministic

types. The only other formal treatment of subtype relationships that deals with abstract

data types is the work of Bruce and Wegner, which is discussed below. Even informal

discussions of subtype relationships have largely ignored incompletely specified types.

Another difference is that our definition of subtype relations explicitly takes into

account a set of observations. This is a feature of some work on observational equivalence

(e.g., (STS5]), but does not appear in other work on subtyping.

5.4.1 Informal Definitions of Subtype Relationships

Schaffert et al. offer the following informal definition of a subtype relationship: "Given

a type S which is a subtype of a type T, then any object of type S behaves like a T object

and may be used wherever a T object may be used" [SCB*86, Section 5]. For types

that are not incompletely specified, this definition seems to agree with our definition

of subtyping. We will make this connection more formally in the next chapters, where

we study imitation and simulation relations between objects. However, for incompletely

specified types a simple relation on objects does not suffice to prove a subtype relation,

as we showed above for the types PSchd and Crowd. In that example, each PSchd object

acts like some Crowd object, but PSchd is not a subtype of Crowd.

Snyder [Sny86b, Page 41) offers the following definition of a subtype relationship: "If

instances of class x meet the external interface of class y, then x should be a subtype of

y." By "external interface" Synder means a behavioral specification; thus his definition of

subtype relationships is also a semantic relationship between instances. For example, he

says that "behavioral subtyping cannot be deduced without formal semantic specification

of behavior." However, he goes on to say that "lacking such specifications, one can deduce

subtyping based solely on syntactic external interfaces (i.e., the names of the operations)

[Car84]." We strongly disagree with this latter statement, since for valid reasoning based

on subtype relationships among abstract types, the semantics of a type must be taken into

account. For example, consider a type IntPairLoop, which is like IntPair except that its

second operation goes into an infinite loop when called. IntPairLoop is not a subtype of

IntPair, although the two types have compatible syntactic interfaces. Although Snyder

cites Cardelli's paper [Car84] to support his statement, Cardelli's syntactic deductions

101

do not apply to abstract types in general, but only to a limited set of types (as we discuss

below).

5.4.2 Cardelli's "Semantics of Multiple Inheritance"

Cardelli's "A Semantics of Multiple Inheritance" [Car84] describes subtype relationships

among the built-in types of a small programming language, as well as its type checking

and semantics. Unlike our definition of subtype relations, Cardelli's paper does not deal

with abstract data types. Since Cardelli only deals with a fixed set of built-in types, he

is able to give simple syntactic rules that determine when one of these types is a subtype

of another type.

Cardelli makes no claim that his syntactic rules extend to abstract types. He only

shows that his syntactic subtyping rules are sound in the sense that they prevent certain

errors in programs written his language. Cardelli writes S <_ T when S is syntactically a

subtype of T. The semantics of Cardelli's language are described using a domain V. This

domain is constructed so that, whenever S < T, then the carrier set of S is a subset of the

carrier set of T [Car84, Page 62]. This supports inclusion polymorphism without generic

invocation, since the instance operations of the built-in types of Cardelli's language work

on all subsets of their domains, and hence on all subtypes.

We can regard Cardelli's V as the only "algebra" in the semantics of a specification of

the built-in types of his language, although it is not technically one of our algebras. An

expression written in his language defines a (deterministic) observation of V. Because of

the way that V is constructed, all environments whose range is V that obey the relation

< are also nominal environments. (That is, if 77(x) has type S and x has nominal type

T, then S < T, which means that Vs _ VT, and so 77(x) also has type T.) Since every

algebra-environment pair imitates itself with respect to all sets of observations written in

his language, Cardelli's < is a subtype relation (in our sense) with respect to all sets of

observations written in his language. So our definition of subtype relations is compatible

with Cardelli's. The differences are that Cardelli considers function types, which are not

easily modeled by our algebras, and our algebras can model abstract data types, and

nondeterministic types, which Cardelli does not handle.

102

5.4.3 Bruce and Wegner's Definition of Subtyping

The work that comes closest to our own is that of Bruce and Wegner [BW87]. In this

subsection we show that our definition of subtype relations is more general than theirs

and point out a failing of their definition.

Our definition is more general than Bruce and Wegner's for two reasons. First, our

definition handles nondeterministic and incompletely specified types, whereas Bruce and

Wegner only deal with a single deterministic algebra. Second, Bruce and Wegner do

not define subtype relations with respect to a set of observations. Bruce and Wegner's

definition does not even focus on the observable behavior of an algebra; instead they

define subtype relations with the aid of a family of homomorphic functions between the

carrier sets of an algebra. Since the existence of a homomorphic function is a strong

condition, using Bruce and Wegner's definition of subtype relations would exclude some

subtype relations that our definition would allow. As we will illustrate below, Bruce

and Wegner's definition fails to show a subtype relationship between two types that are

observably equivalent. In Chapter 6 we show that certain homomorphic relations can be

used to prove subtype relationships. Because homomorphic functions are a special case

of homomorphic relations, Bruce and Wegner's definition is not as general as ours.

In the rest of this subsection we show how Bruce and Wegner's definition fails to show

a subtype relationship between two types that are observably equivalent. We show this

with an example adapted from a paper by Mitchell [Mit86, Page 266]. In this example,

the types S1 and S2 represent multi-sets of integers. Bruce and Wegner do not tell us how

to model specifications, so we simply consider an algebra A, where the elements of the

carrier set of SI are lists (written [1, 21 below) of ordered pairs of the form (element, count)

and the elements of the carrier set of S2 are just lists of the elements inserted in the order

in which they are inserted. Besides the class operations new of types S1 and S2 (which

return empty multi-sets of types S1 and S2 respectively), each type supports the instance

operations ins and count. To illustrate the representations, suppose ii(x) denotes the

result of new(S2). Then we have,

M[ins(ins(x, 5),40)](A,r7) = {[5,40]}.

103

Similarly, if 77(y) denotes the result of new(Si), then

M[ins(ins(x,5),40)J(A, t) = ([(5,1), (40, 1)]}.

Our example exploits the differences in these representations. Let the environment 17

and objects q and r be such that

77(q) = q j r = 7(r).

We then have

M [ins (ins (ins (new(S2), q), r), q)](A, 77)

= {[q,r,q]}

{[q,q,r]}

= M Jins(ins(ins(new(S2), q), q), r)](A, 1)

although if we use SI instead of S2 these are equal:

.M/ [ins(ins(ins(new(S i), q), r), q)l(A, 77)

= {[(q, 2), (r, 1)]}

= M[ins(ins(ins(new(Si), q), q), r)](A, ,).

For S1 to be a subtype of S2 according to Bruce and Wegner's definition, there would

have to be a homomorphic function C(1, 2) from Si to S2. Because of the structure-

preserving nature of this function we have the following equaiions, for all environments

7 such that 7(q) = q $ r= q(r).

c(1,)(M[new(Si)J(A,71)) = M[new(S2)](A, 77) = {[J}

c(1,2)(M[ins(new(Sl), q)](A, 77)) = M[ins(new(S2), q)](A, 1) = {[q]}

c(1, 2)(M[ins(ins(new(Si), q), r)I(A, 77)) = {[q, r]}

c(1, 2)(AM[ins(ins(ins(new(Si), q), r), q)](.4,7)) = {[q, r, q]}

c(, 2)(M[ins(ins(new(Si), q), q)](A, 71)) = {[q, q]}

c(1, 2)(M[ins(ins(ins(new(Si), q), q), r)](A, 77)) = {[q, q,r]}.

104

Since in q the only possible result of both ins(ins(ins(new(S1), q), r), q) and

ins (ins (ins (new (S1) , q) , q) . r) is the list of pairs [(q, 2), (r, 1)], c(1, 2) would have

to map [(q, 2), (r, 1)] to both jq ,q and jq, q, r]. Therefore, c(1,2) cannot be a function.-

So Bruce and Wegner's definition fails to show a subtype relationship between ob-

servably equivalent types.

Chapter 6

Simulation Relations

In this chapter we show how to prove that a binary relation is a subtype relation with

respect to type-safe NOAL programs using simulation relationships among objects. We

also begin to turn our attention from specification to verification, because simulation

plays a central role in our Hoare-style verification technique for NOAL programs.

How can one prove that a binary relation on types is a subtype relation with respect to

the set of all type-safe NOAL programs? Since the set of all type-safe NOAL programs is

infinite, the obvious answer is to use an induction on the structure of NOAL expressions.

The obvious induction hypothesis is that if one environment imitates another, then for

each subexpression E, each possible result of E in the first environment "imitates" some

possible result of E in the second environm(nt. However, it is difficult to make this

induction work, because imitation only directly constrains the possible results of whole

programs, not expressions.

Since we do not know if the obvious induction hypothesis can be made to work, we

use a more convenient hypothesis, which may also be stronger. We define a notion of

simulation that is preserved by each NOAL expression. So to prove that a binary relation

on types is a subtype relation we only have to show that each environment that obeys

the relation simulates some nominal environment.

However, we also want simulation to be a more practical tool than imitation. So

simulation relations are defined as relations between objects instead of relations between

environments. Furthermore, we define simulation relations so that one can easily check

whether a relation among objects is a simulation relation. That is, instead of checking

that a simulation relation is preserved by all expressions, one only has to check that it is

the identity relation on instances of the visible types (like Bool and Int) and that it is

105

106

preserved by generic invocation expressions.

For example, consider the specification MP (which contains the types Mob and PSchd

as specified in Figures 2.6 and 4.2) and the relation RI that is the identity on instances of

Bool and Int, and that relates each instance of PSchd to a maximally nondeterministic

instance of Mob with the same set of waiting integers. This 1? relates the PSchd instance

denoted by

ins(ins(new(PSchd,true), 1),2)

to a maximally nondeterministic instance of Mob denoted by

ins(ins(ne(Mob) ,) ,2).

Ve check that this relationship is preserved by each generic invocation in the following

manner.

" For the generic operation empty?, the only possible result on the PSchd instance is

false, which is also the only possible result on the Mob instance.

" For the generic invocation next, the only possible result on the PSchd instance is

1, which is related by 1? to 1, and 1 is a possible result on the Mob instance.

" For all integers i, the only possible result of

waiting?(ins(ins(new(PSchd,true),1),2),i)

is related by R? to the only possible result of

waiting?(ins(ins(new(Mob),1),2),i).

" Furthermore, for all integers j, the result of

ins(ins(ins(new(PSchd,true), i),2) ,j)

is related by 7? to the result of

ins(ins(ins(new(Mob) ,1) ,2) ,j),

since both have the same set of waiting integers.

107

In this example we have checked only that R is preserved by the instance operations

of type Mob. We did not check the PSchd instance operation leastFirst, because

leastFirst cannot be applied to an expression of nominal type Mob.

In a program that uses inclusion polymorphism, instances of a subtype can be

treated as if they were instances of a supertype. For example, suppose x and y are

identifiers of nominal type Mob that denote the PSchd instances new(PSchd,true) and

new(PSchd,false) (respectively). We can apply only the instance operations of type

Mob to these identifiers in a type-safe NOAL program; therefore the values of x and y

cannot be distinguished by a type-safe program. However, if x and y had type PSchd,

we could also apply the operation leastFirst, which would distinguish them. That is,

viewed as instances of Mob, these instances simulate each other, but viewed as instances

of PSchd neither simulates the other. Therefore, in our formal treatment of simulation a

simulation relation is a family of relations, one per type, so that we can keep the simu-

lation relationships for each view straight. For example, we say that new(PSchd,true)

simulates new(PSchd,false) at type Mob, but this relationship does not hold at type

PSchd.

To prove that a binary relation < is a subtype relation, we need a simulation relation

such that whenever S < T, then each instance of type S is related to some instance of

type T at type T. Such simulation relations are said to witness the relation <. If we

have a simulation relation that witnesses <, then from every environment that obeys <

we can build a nominal environment that the first environment imitates. The nominal

environment is built by replacing each binding of an instance q of type S to an identifier

of nominal type T where S < T with a binding of an instance r of type T such that q

simulates r at type T.

We also use simulation relations that witness a subtype relation during the verifi-

cation of NOAL programs, where such simulation relations are used to coerce objects

from subtypes to supertypes. For example, consider the following call to the function

is2waiting, which is specified in Figure 4.1:

is2waiting(new(PSchd,true)).

From the specification of PSchd, we can conclude that if x : PSchd denotes the result of

new(PSchd,true), then (2 E x.second) = false. The specification of is2waiting has a

108

description of the function's effect written using the trait functions of type Mob (it says

that the result is 2 E m, where m : Mob is the formal argument). So to find the effect

of the call we note that new(PSchd,true) simulates new(Mob) at type Mob and that if

m : Mob denotes new(Mob), then (2 E m) = false. Details appear in Chapter 7.

In the rest of this chapter we give a formal definition of simulation relations, show

that simulation is preserved by NOAL expressions, discuss how simulation relations can

be used to prove that a binary relation on types is a subtype relation, and give several

examples of such proofs.

6.1 Definition of Simulation Relations

In this section we give a formal definition of simulation relations and compare simulation

relations with some related concepts.

We call a family of relations, which has one binary relation between the carrier sets

of two algebras per type, a typed family of relations.

Definition 6.1.1 (typed family of relations). Let E = (TYPES, V, TFUNS, OPS)

be a signature. A typed family of relations, 7, between E-algebras C and A is a set of

binary relations on the carrier sets of C and A indexed by TYPES:

1- {=?T 9 (CTYPES X ATYPES) IT E TYPES}

Each lZT may relate objects of types other than T and may also relate objects having

different types. For example, "MZob may related two instances of PSchd or an instance of

PSchd to an instance of type Mob.

To find whether an environment is related by a typed family of relations to some

other environment, we use the nominal type of each identifier to select the appropriate

relation, lT. That is, given environments ql E ENV(X, C) and r72 E ENV(X,A), we

write 771 1? q2 when for all types T and for all identifiers x : T E X, 771(x) TZT 772(x).

For notational convenience, we also use the following abbreviations when dealing with

a typed family of relations, 1?., and the binary relations R.T.

* Given subsets Q 9 CTYPES and R C ATYPES, we write Q lZr R when for all q E Q,

there is some r E R such that q 1ZT r. We often use this notation when comparing

109

sets of possible results and the carrier sets of the various types. For example,

Cs IZT AT means that for each instance q of type S in the algebra C, there is an

instance r of type T in A such that q lZT r.

9 Given a tuple T of types and two tuples of objects the same length j and r-, we

write e'7y F, when for each i, qi lZT, ri.

We also use vector notation for tuples of variables and expressions. We also write

77(i) for the tuple of the values, (... ,?7(xi),...).

There are four properties that characterize when a typed family of relations is a sim-

ulation relation. First, a simulation relation is preserved by each generic invocation; we

call such a typed family of relations a "homomorphic relation for NomSig and <," since

the set of generic invocations and their nominal types are determined by a nominal sig-

nature map NomSig and a presumed subtype relation <. Second, a simulation relation

must be the identity on the visible types; we call such relations "V-identical." Third, a

simulation relation must preserve the meaning of I; we call such a relation "bistrict."

Finally, the relationships at each subtype must hold at each supertype. The last prop-

erty has a largely technical motivation, but it embodies the intuition that if one object

simulates another at a subtype, then this simulation relationship should hold at each

supertype, since no other generic operations will be applicable at the supertype.

We give the formal definition of these terms after presenting our definition of simula-

tion relations.

Definition 6.1.2 (simulation relation). Let E be a signature. Let NomSig be a nom-

inal signature map. Let < be a binary relation on the types of E. Let C and A be

E-algebras. A simulation relation between C and A for NomSig and < is a homomorphic

relation between C and A for NomSig and < that is V-identical, bistrict and such that

for all types S and T,

(S < T) = (Zs 9 Z.T) (6.1)

The definition of a homomorphic relation formalizes the notion that the relation at

each type is preserved by each generic invocation that is applicable to expressions of that

type.

110

Definition 6.1.3 (homomorphic relation). Let E = (TYPES, V, TFUNS, OPS) be

a signature. Let NomSig be a nominal signature map whose domain is a set GOP of

generic operation symbols. Let < be a presumed subtype relation. A typed family of

relations, 1Z, between E-algebras C and A is a homomorphic relation between C and A for

NomSig and < if and only if for all sets of typed identifiers X, whenever 77, E ENV(X, C)

and ?172 E ENV(X, A) are such that 771 1Z 712, then for all T E TYPES, for all generic

operation symbols g E GOP, and for all identifier lists X : S E X such that the nominal

type of g(i) is T,

MJg()J(C,i) RZT M[g(i)](A, 72)- (6.2)

Formula 6.2 says that every possible result of M[&g()](C, 711) is related by lT to some

possible result of Mrg()J(Aq 2).

We sometimes omit mention of the algebras, NomSig, and < when they axe not

important or are clear from context.

In the definition above, the identifier list - may be empty. Therefore, if 7Z is a

homomorphic relation between C and A, then for all nullary generic operation symbols

(i.e., type symbols) T E GOP such that the nominal type of To is TCass, and for all

environments r7i and 072,

M[T(01(C, 71) IrTla-s M [TOJ(A, 12). (6.3)

This follows because the denotation of the expression To does not depend on an envi-

ronment, and furthermore if q, E ENV(O,C) and 12 E ENV(O, A), then by definition

q/, t 12. So if there are nullary generic operation symbols in the domain of NomSig, then

a homomorphic relation for NorSig and < cannot be empty.

A trivial example of a homomorphic relation between an algebra A and itself is the

typed family of equality relations on the carrier sets of A. A trivial example of a homo-

morphic relation between two algebras C and A is the typed family of relations each of

which relates every object in the carrier set of C to every object in the carrier set of A.

We require that simulation relations be V-identical and bistrict so that this "complete"

homomorphic relation not a simulation relation.

Unless it preserves the meaning of the visible types, a homomorphic relation embodies

a poor notion of "simulation." The following definition describes what we mean by

111

preserving the meaning of the visible types. The definiti.n mah.,s sense because we have

assumed that the same reduct that defines the visible types is used in each algebra.

Definition 6.1.4 (V-identical). Let E = (TYPES, V, TFUNS, OPS) be a signature.

Let C and A be E-algebras. Then a typed family of binary relations 1Z between the C

and A is V-identical if and only if:

" for each type T E TYPES, if qlZrr and either q or r is a proper instance of a visible

type, then q = r,

" for each visible type v E V, 1Z, contains the identity relation on A,, and

" for each type T E TYPES and for all visible types v E V, if there is some proper

element q E A, such that q IZr q, then for all proper elements r in A,, r T?.T r.

The first condition says that distinct elements of the visible types cannot be related. The

second condition says that at each visible type v, 1?, is the identity on the carrier set

of v. While at first glance it would seem better to prohibit RT from relating objects

of a visible type v when T # v, this restriction would prevent us from using simulation

relations to prove that a visible type is a subtype of some other type. The third condition

allows our proofs to work without such restrictions, although it is somewhat complex.

We also require that a simulation relation preserve the meaning of I, which represents

nontermination and errors in our algebras.

Definition 6.1.5 (bistrict). A binary relation < is bistrict if and only if I < I and

whenever q < r and one of q or r is 1, then so is the other.

Note that a bistrict relation cannot be empty. We call a typed family of relations 7?

bistrict if each TT is bistrict.

As an example of a simulation relation, let NomSig be determined by the specification

IPT (see Figure 2.2). Recall that for this specification, the presumed subtype relation < is

the smallest reflexive relation on the types of IPT such that IntTriple < IntPair. Let A

be the algebra of Figure 2.5. Let 1? be the smallest bistrict typed family of relations such

that for all types T, if q E AT, then q RT q, and for all (ql, q2, q3), (ql, q2, q4) E AIntTriple

112

and (ql,q2) E AIntpair,

(ql, q2 , q3) ZIntPair (ql, q2) (6.4)

(ql, q2) RiatPair (qi, q2, Q'a (6.5)

(ql, q2, q) Ritpair (ql, q2, q4). (6.6)

Then 1z is a simulation relation for NomSig and <. By construction, 1R is bistrict, V-

identical, and relationships at type IntTriple hold at type IntPair. To show that 1? is

a homomorphic relation for NomSig and <, let X and environments 171,772 E ENV(X, A)

be such that 71 1Z 772. Suppose g($) is a generic invocation of some nominal type T. If none

of the identifiers in W have nominal type IntPair, then by construction ;71(i) = 772(i)

and thus M[&g()(A, 1) = M [g()l(A, 772); since each R.T contains the identity relation

on AT, it follows that MI[g(i)J(A,i71) R-T M[g(i)J(A,7 2). The only generic operation

symbols that can take an argument of nominal type IntPair are f irst and second.

Suppose x has nominal type IntPair, then since th(X) IZxtpair 172(W), the first and second

components of 77(x) and 12 (x) must be the same if they are proper objects. Therefore

we have:

M[first(x)J(A, q1) = M[first(x)J(A, 12) (6.7)

M[second(x)j(A,i71) = M[second(x)J(A,q12). (6.8)

So this R is a homomorphic relation.

A homomorphic relation has a substitution property: each generic invocation maps

related arguments to related results (Formula 6.2). Moreover, the possible results of a

generic invocation g(i) are related by RZT, where the nominal type of g(i) is T. This

substitution property is the key to our inductive proof that simulation is preserved by

all type-safe NOAL expressions.

The substitution property is similar to the defining property of Nipkow's simulation

relations [Nip86]. The difference is that we provide for generic invocation mechanisms

and allow objects of one type to be related to objects of another type.

A substitution property is also used to define homomorphisms between multisorted

algebras [Gra79, Page 35]. Our homomorphic relations differ from the usual homomor-

phisms between multisorted algebras [EM85] in two ways: they are relations instead of

113

functions, and they may relate objects of one type to objects of another type. Neverthe-

less, it is appropriate to call homomorphic relations "homomorphic," because they have

a substitution property and they can be composed. (The composition of homomorphic

relations is just the usual product of relations at each type.)

Simulation relations are also similar to, but more general than, the coercer functions

that form the basis of Bruce and Wegner's definitions of subtype relations [BW87].

Homomorphic relations also resemble the "logical relations" used in the study of the

lambda calculus [Sta85] [MitS6]. An important property of logical relations is captured

by the so-called fundamental theorem of logical relations [Sta85]. In the next section we

state and prove our version of the fundamental theorem (which is Theorem 6.2.3).

6.2 Simulation as a Criterion for Imitation

In this section we show that simulation is preserved by all type-safe NOAL expressions.

That is, the substitution property holds for NOAL expressions and programs as well as

generic invocations. This allows us to conclude that if 1?. is a simulation relation for

NomSig and < and TR relates two environments, then the first environment imitates the

second with respect to the set of type-safe NOAL programs over NomSig and <. This

result is used in the next section in our technique for showing that a binary relation on

types is a subtype relation.

Our strategy is as follows. We first show that simulation is preserved by all NOAL

expressions. Since simulation relations are V-identical and bistrict, and since type-safe

programs have visible type, it follows that simulation can be used as a criterion for

imitation. To show the desired result for NOAL expressions, we first assume that the

denotations of each free function identifier in the two algebras are related by 1Z (in a way

we describe below). We then show (in Appendix C) that the two meanings, one for each

algebra, of a system of recursively defined function identifiers are properly related.

Since NOAL "functions" can be nondeterministic, their denotations are operations

(i.e., set-valued functions). We compare operations by analogy to the definition of logical

relations [Sta85] [Mit86]. That is, if 1? is a typed family of relations, then we extend 1?

to the signatures of NOAL function identifiers as follows:

del
f..., a e {(fl,f2) I q~r - = fi(q no f2(r (6.9)

114

That is, for all operations f, and f2, f, is related by 1?f-, to f2 if and only if whenever

1X? F', then for every q' E fi(q-, there is some r' E f 2(F) such that q' 7, r'. Notice that

this extension of 1Z preserves the substitution property of simulation relations. Since op-

erations are not first-class objects in NOAL, we need not be concerned that this extension

has all the properties of a simulation relation at each function signature.

To deal with NOAL expressions that have free function identifiers, we allow envi-

ronments to map typed function identifiers to operations (i.e., to relations that denote

recursively defined NOAL functions).

For brevity, throughout the rest of this section we establish the following conventions.

= (SORTS, TYPES, V, TFUNS, OPS) is a signature.

A and B are E-algebras.

NomSig is a nominal signature map.

GOP is the domain of NomSig, a set of generic operation symbols.

< is a binary relation on type symbols.

Recall that NomSig and < can be used to determine the nominal type of a NOAL program

or expression, if one exists.

6.2.1 The Substitution Property for NOAL Expressions

Informally, the following lemma says that simulation is preserved by NOAL expressions

if it is preserved by each recursively defined function.

Lemma 6.2.1. Let X be a set of typed identifiers and function identifiers. Let 'q1 E

ENV(X, A) and 112 E ENV(X, B) be environments.

If 17 is a simulation relation between A and B for NomSig and < and if ?h 1Z 172, then

for all types T and for all recursion-free NOAL expressions E of nominal type T whose

free identifiers and function identifiers are a subset of X,

MIEJ(A,9,) T T M[EI(B,772).

Proof: (by induction on the structure of expressions).

For the basis, we suppose that the expression is either an identifier, bottom [T], or

the invocation of a nullary generic operation symbol. If the expression is an identifier,

115

then the result follows from tql l'qi2 . If the expression is bottom [T] for some type T, then

the result follows from the bistrictness of lT. If the expression is go for some nullary

generic operation symbol g of nominal signature -+ T, then since 91 1Z '12, by definition

of a homomorphic relation we have

.M4[g()](A,771) 7"ZT M4 [g()](B, 272).

For the inductive step we assume that if h 1Z 712, then the denotation of each subex-

pression of nominal type T in the environment ql is related by TZT to the denotation of

the same subexpression in the environment 772. There are several cases (see Figures 3.1

and 3.2).

" Suppose the expression is g(E) and E is not empty. Since this expression has a

nominal type, by the type inference rules it must be that S --+ T e NomSig(g), E,

has nominal type a, al = S1, and for i from 2 to n, ai <Si. Let q-E M[-1I(A, 11)

be given. By the inductive hypothesis, there is some ' E M[I](B,1 2) such that

1T ,j. Since a, = S1, IZ,= IS,, and since for i from 2 to n, o-i < i, I,, g 1Zsj.

Therefore 1R g "R? and so 'Rg r. Let Z- : 6 be a list of typed identifiers, none of

which occurs free in f. Since q"?g r-, if we bind -'to Z in 77, (written I1[/z]) and

we bind r- to - in 772, then (711 [IF/zj)1 (72 [F'/z"j). Since 1Z is a homomorphic relation,

it follows that
M[g(:i)(A,,i/zl) RT M[g(M)(B, / (6.10)

Furthermore, from the definition of NOAL one can show that

M= .J M[g()] (A, (6.11)

Therefore, for every possible result q E M[g(!)](A, '1) there is some r G

M[g(f)l(B, 72) such that q 1.Tr.

" Suppose the expression is f(E) and f is a function identifier of nominal signature

S -- T. Since this expression has a nominal type, by the type inference rules it

must be that E has nominal type a and 6 < S. Let q" E M[!EJ(A, r1,) be given.

By the inductive hypothesis, there is some F E M [I;(B, q2) such that q7- 9,.

Since 5 < S, Ta, g 1Z and so T1Zg J-7. Since 71 1 '12, r1(f) Z-.T 772(f), and

116

thus (771(f))(q) lT (i72(f))(-). So, by definition of NOAL, for every possible result

q E M[f(9)](A,r1 1) there is some r E M[f(E!)](B, q2) such that qlZTr.

* Suppose the expression is (fun(i : $)Eo)(E) and that the nominal type of the entire

expression is T. Let q'E M [EJ(A, 71) be given. By the inductive hypothesis, there

is some F E M[E](B, 12 such that q'a, r-, where - is the nominal type of .. Since

the expression has a nominal type, by the type inference rules for NOAL it must

be that a < S; thus q-7Rg r. It follows that if we bind q- to x- in irl and F to X in

772, then (ill [./x-) 7Z (i2 [i!/x); thus the result follows by the inductive hypothesis

(applied to E0).

" Suppose the expression is if El then E2 else E 3 fi. Since Bool is a visible

type and 1Z is V-identical, the possible results from E1 in th are a subset of those

possible in 72. Therefore the result follows from the inductive hypothesis applied

to E 2 and E3.

" Suppose the expression is E1 [E2. The possible results of this expression are the

union of those from E1 and E2 . Since the expression has a nominal type, the types

of both El and E2 must be the same, say T. By the inductive hypothesis, for every

possible result q of El in the environment qh there is some possible result r from El

in the environment 712 such that q lZT r; similarly for E2. Hence the result follows.

" Suppose the expression is El V E2 and has type T. The possible results of this

expression are the union of those from El and E2, except that 1 appears only

if it is a possible result of both. This is the same as the previous case, except

that we have to be careful about 1. Suppose, for the sake of contradiction, that

there was some q in M[E V E2](A, rl) such that q is not related by lZr to some

element of M[El V E2I(B,772). By the previous case, if M[EUE2 I(B, 712) is the

same as M[E1 V E2](B, 12), then this would be a contradiction; so we can assume

that M[El V E 21(B, 772) does not include I and q lT -. Since 1?T is bistrict, it

must be that q = 1. Furthermore, by definition of V, since M[E V E 2](B, 772)

does not include 1, it must be that either El or E2 is guaranteed to termi-

nate in B and 772. Without loss of generality, suppose 1 V M[El](B,12).

117

Then . ' M[El](A,71), since 1? is bistrict and by the inductive hypothesis

M[E]j(A,qi) lZT M[El(B,712). But then by definition of NOAL's angelic choice

operator, _L is not in M [El V E 21(A, rh). This contradicts the assumption that

q E M E, V E 21(A, 71), since q = 1. Hence the result follows.

* If the expression is isDef? (El), then the result follows directly from the inductive

hypothesis applied to E1 and the bistrictness of 1R.

II

The proof of the above lemma is the source of our requirement that simulation re-

lationships at a subtype also hold at each supertype. This property guarantees that

expressions related at a subtype are also related when we exploit inclusion polymor-

phism. For example, if E has nominal type S, S is a subtype of T, and the function

identifier f has nominal signature T --+ U, then the expression f(E) is type-safe; further-

more, if the meanings of E in 77 and 772 are related at type S and if the meanings of f

are also related at type T --+ U, then by this property the arguments are related at the

nominal argument type T, and thus the results are related at the nominal result type U.

6.2.2 The Substitution Property for NOAL Programs

To show that the substitution property holds for NOAL programs we need to show that

simulation is preserved by recursively-defined NOAL functions. The proof is involved be-

cause of NOAL's erratic and angelic choice expressions and has therefore been relegated

to Appendix C. However, the idea of the proof can be stated as follows. To deal with

functions that use only erratic choice one uses a family of approximations, each of which

is deterministic and that together cover the choices available to functions that use erratic

choice. To deal with angelic choice one first rewrites the functions, replacing angelic with

erratic choices and uses the limit of the erratic choice approximations as a first approx-

imation. Then one expands recursive calls in-line, obtaining a series of approximations

that use angelic choice for deeper and deeper recursions. At each stage of approximation,

simulation is preserved. We also show that simulation is preserved by the various limit

operators. This series of lemmas culminates in the following result.

118

Lemma 6.2.2. Let
fun f 1 (Xj S) = E;

fun fm(X : S) =E

be a mutually recursive system of NOAL function definitions.

Suppose 1? is a simulation relation between algebras A and B for NomSig and <.

Then for each j from 1 to m,

.- (A)[fj] Rgs,-T, F'(B)[fj]. (6.12)

Proof: See Appendix C. I

Using the above lemma, we can prove that simulation is a valid criterion for imitation.

Theorem 6.2.3. Let E be a signature. Let A and B be]E-algebras. Let NomSig be a

nominal signature map. Let < be a binary relation on type symbols.

Suppose that 1? is a simulation relation between A and B for NomSig and <. Then

for all sets of typed identifiers X, for all environments 7A E ENV(X, A), and for all

environments 7B E ENV(X,B), if 7A 1Z r7B, then (A, 1A) imitates (B,rqB) with respect

to the set of all type-safe NOAL programs over NomSig and <.

Proof: Suppose that 1? is a simulation relation between A and B for NomSig and

<. Let X be a set of typed identifiers and let 771 E ENV(X, A) and 772 E ENV(X, B) be

such that 77 1' 72. Let P be a type-safe NOAL program over NomSig and <. In general

P has the form
fun fl(zI :) T, = Ei;

fun fm(z,, S,) : T,. = Em;
E.

Since P is type-safe, P has some nominal type, say T. Let Z be the set of typed function

identifiers that contains the fj with their nominal signatures. Let ' E ENV(Z U X, A)

and 17' E ENV(Z U X, B) be defined so that for all x E X, 77'(x) = 771(x), ?1'(X) = 772(X)

and for all fj E Z, r7'(fj) is the denotation of fj in A and q'(fj) is the denotation of fj

in B. By Lemma 6.2.2, q' 1Zt', since the denotations of recursively defined functions are

related by R?. So by Lemma 6.2.1,

.M[EI(A, /') 1ZT Md[E](B, rq'). (6.13)

119

Therefore, by the semantics of NOAL programs,

M J,4PI(A, qh) Tr M IPI(B, 712). (614)

Recall that this means that for each q E M[P](A,r 1), there is some r E M[P](B, %l)

such that q RIT r. Since P is a program, its nominal type must be a visible type; that is,

T E V. Since 1. is V-identical, for each q E MjPJ(A,71), there is some r E M[P] (B, 772)

such that q = r; that is,

M [P](A, yir) C M[Pfl(B,r72). (6.15)

Therefore (A, iii) imitates (B, 712) with respect to the set of type-safe NOAL programs

over NomSig and <. So by definition, 1?. is an imitation relation. I

The significance of the above theorem is that simulation relations can be used to prove

that a binary relation on types is a subtype relation with respect to the set of type-safe

NOAL programs, as discussed in the next section.

6.3 Proving Subtype Relations using Simulation Relations

In this section we describe our technique of proving subtype relations using a simulation

relation.

The idea is to find simulation relations that witness a subtype relation in the sense

that they relate every instance of a subtype to some instance of its supertypes.

Definition 6.3.1 (witnesses). Let , be a signature. Let C and A be E-algebras. Let

< be a binary relation on types. A typed family of relations 1"¢ between C and A witnesses

< if and only if for all types S and T,

(S < T) : (CS IZT AT). (6.16)

To prove that < is a subtype relation on the types of SPEC with respect to type-safe

NOAL programs, one must find simulation relations that witness < for each SPEC-

algebra.

Theorem 6.3.2. Let E be a signature. Let SPEC be a set of E-algebras. Let NomSig

be a nominal signature map. Let < be a binary relation on types.

120

If for every C E SPEC there is some A E SPEC and some simulation relation 1.

between C and A for NomSig and < such that 1Z witnesses <, then < is a subtype

relation on the types of SPEC with respect to the set of type-safe NOAL programs over

NomSig and <.

Proof: Let C E SPEC be given. By hypothesis, there is some A E SPEC and some

simulation relation 7Z between C and A for NomSig and < such that R)? witnesses <. Let

X be a set of typed identifiers. Let 77c E ENV(X, C) be such that rc obeys <.

Since 7Z witnesses < we can build a nominal environment "lA e ENV(X, A) such that

17c 1Z 7A. That is, for each x : T E X, there is some type S < T such that r1c(x) E Cs.

Since 1R witnesses <, there is some r E AT such that rc(x) 1Z r. So let r7A(X) =L r.

Since 77c 77 r)A, by Theorem 6.2.3, (C, ric) imitates (A, 7lA) with respect to the set of

type-safe NOAL programs over NomSig and <. So by definition, < is a subtype relation.

I

The above technique for proving subtype relations may not be complete. That is,

although finding simulation relations that witness < is sufficient to prove that < is a

subtype relation, we do not know whether this condition is necessary for < to be a

subtype relation. A simpler problem, which, if it can be answered in the affirmative,

would imply the completeness of our technique for proving subtype relations, is the

following: if (C, 77c) imitates (A, 77A) with respect to the set of type-safe NOAL programs

over NomSig and <, is there a simulation relation 1?. between C and A for NomSig and

< such that r7c 1Z 77A? However, this simpler problem is not equivalent to the problem of

whether our technique for proving subtype relations is complete.

In the rest of this section we look at some ways to make our proof technique more

practical.

6.3.1 Modularity in Proofs of Subtype Relations

In this subsection we discuss the problem of proving subtype relationships instead of

subtype relatioj,. .

Our formal treatment of subtyping deals with subtype relations instead of subtype

relationships. So formally, we cannot prove that one type is a subtype of another, but

only that a particular binary relation on types is a subtype relation. This is less modular

121

than one would like, because it requires one to look at all the types in a program at once

instead of looking at individual subtype relationships.

To attack the modularity problem directly one would have to find conditions on type

specifications and the set of observations that would allow individual subtype relation-

ships to be checked. Another way to attack this problem would be to consider adding

types one at a time to a specification and to consider the question of what conditions on

the new type specification will ensure that a subtype relation on the old type specification

is still a subtype relation on the new type specification. We leave these approaches as

problems for future work.

One reason for leaving this problem for future work is the difficulty of giving a general

definition of subtype relationships instead of subtype relations. One way to define subtype

relationships would be to show that for each specification there is a largest subtype

relation, and then to say that S is a subtype of T if they are related by this largest

relation. The binary relations on a set of type symbols can be partially ordered by set

inclusion (9). If <1C<, then we say that <2 is larger than <1. So < is the largest

subtype relation on the types of a specification if it is larger than all other subtype

relations on that specification's types. However, we will show by an example below that

with respect to an arbitrary set of observations there may be no largest subtype relation

for a given specification.

Another problem with largest subtype relations is that the set of observations defined

by type-safe programs changes when the presumed subtype relation changes. For exam-

ple, the set of type-safe NOAL programs is determined, in part, by the presumed subtype

relation. The same is true in Trellis/Owl. We do not know whether there are example

specifications where there are two incomparable binary relations on types such that each

is a subtype relation with respect to the corresponding set of type-safe programs.

On the other hand, the lack of . largest subtype relation is not terribly important

to programmers. One normally writes a type specification with some subtype relation

in mind, since one has to choose the names of instance operations and specifications

carefully to make the desired subtype relationships hold. So programmers should be

more interested in whether a particular binary relation on types is a subtype relation

than in finding all the subtype relations for a given specification.

122

In the rest of this section we present an example with two incomparable subtype

relations and no subtype relation that is larger than both. Our example involves two

types, T1 and T2. Since our specification language cannot handle this example, consider

the algebra A presented in Figure 6.1 as the only algebra in the semantics of a specification

we will call T12.

Let <1 be the smallest reflexive relation on the types of T12 such that T1 <1 T2.

Let <_2 be the smallest reflexive relation on the types of T12 such that T2 <2 T1. We

claim that <1 and <2 are subtype relations on the types of T12 with respect to the set

of observations OBS described by the NOAL program g(x2, xi), where x1 : TI and

x2 : T2.

Lemma 6.3.3. Let <1 and OBS be as described above. Then the relation < is a

subtype relation on the types of T12 with respect to OBS.

Proof: Let X be a set of typed identifiers, indexed by the types of T12. Let 77A E

ENV(X,A) be an environment that obeys <1. If {xi : T1, x2 : T2} 9 X, then by

definition, (A, TiA) imitates (A,r7) with respect to OBS, for all nominal environments

77 E ENV(X, A). If {xl : T1, x2: T2} C X, then let 'q2 E ENV(X, A) be defined so that

for all x : T1 E X, 772(x) IMF a, for all x : T2 E X, 772(x) 4_ b, and for all other identifiers,

772(x) = ?7A(x). Note that rq2 is a nominal environment. The only observation in OBS is

the program above. Note that

M[g(x2,xl)(A,7A) = {false} (6.17)

M[g(x2,x1)J(A,n 2) = {false}. (6.18)

The first equation holds because the generic invocation mechanism either calls gT2,T1.Bool

or gT1,T1-.Bool. Therefore, (A, 77A) imitates (A, 772) with respect to OBS. Since for all

environments 77A this construction produces a nominal algebra-environment pair (A, 772),

by definition < is a subtype relation. I

Lemma 6.3.4. Let <2 and OBS be as described above. Then the relation <_2 is a

subtype relation on the types of T12 with respect to OBS.

Proof: Let 77A E ENV(X,A) be an environment that obeys -2. If {xl : Tl,x2

T2} C X, then we can define a nominal environment 712 E ENV(X, A) as in the previous

123

Figure 6.1: The T12-algebra, A.

Carrier Sets
ATI =~ I,a}

def
ATM. =~ 11,bT}

de f
AT2C1S = I ,T b}

def

T O =1, T2}
def

def
ABOI(= T1o

ef
A A,,~lS() J a a

A A,,lO~(1 a'2) f b fle

AT2-T2 Class() Le {T2}
AneUTClsT 2 (T 2) L-f {b}

A8T2,Tl-Bool(XIY 2) Lef {false}

4l

AgT 2 T2-Boo(YI, Y) L (false}

AB*,00j 0 Cja 8 () =e I{Bool}

124

proof. Again

M g(x2,x1)l(A, nA) = {false} (6.19)

M[g(x2,x1)(A, 2) = {false}, (6.20)

where the first equation holds because the generic invocation mechanism either calls

gT2,T--.Bool or gT2,T2--.Bool. I

However, the union <1 and <2 is not a subtype relation with respect to OBS. To see

this, let X = {xl : T1,x2 : T2}, and consider the environment 773 E ENV(X, A) defined

such that 773(x1) 41 b and 93(x2) t=_t a. Then 7/3 obeys < U <2, but

M[g(x2,xl)](C,q/3) = {true}, (6.21)

although this cannot happen in a nominal environment.

As we show in the following lemma, there can be no subtype relation that contains

<1 U <2, since every subset of a subtype relation is also a subtype relation.

Lemma 6.3.5. Let E be a signature and let SPEC be a nonempty set of E-algebras.

Let OBS be a set of observations. Let < be a binary relation on types.

If < is a subtype relation on the types of SPEC with respect to OBS, then every

subset of < is a subtype relation on the types of SPEC with respect to OBS.

Proof: Suppose <' is a subset of <. Let C E SPEC be given. Let X be a set

of typed identifiers, and let ??c E ENV(X, C) be such that 77c obeys <'. Since <'C<,

7c obeys <. So by definition of subtype relation, there is some A E SPEC and some

nominal environment 17A E ENV(X, A) such that (C, i1c) imitates (A, 7A) with respect to

OBS. Since the same algebra A can be used for all environments over C, <' is a subtype

relation. I

Therefore there is no largest subtype relation on the types of T12 with respect to the

set of observations described by the NOAL program g(xl,x2).

One might object that the set of observations for the above example is so small. For

example, if the program g(xl ,x2) were included in the set of observations, then neither

_51 nor <2 would be a subtype relation with respect to this enlarged set of observations.

We leave it as an open problem whether there is some set of conditions on specifications

and observations that ensures that there are largest subtype relations.

125

In general there may not be a largest simulation relation between two algebras for

a given nominal signature map and presumed subtype relation. We could show this by

adapting one of Nipkow's examples that has two incomparable simulation relations whose

union is not a simulation relation [Nip87, Page 52].

6.3.2 Using Universal Models in Proving Subtype Relations

If one wants to prove that a binary relation is a subtype relation, it would be convenient

to just work with the abstract values of types [Hoa72] instead of all algebraic models.

Many specifications have algebraic models whose carrier sets can be thought of as the

set of abstract values of the corresponding types. Such specifications are said to have

universal models.

Intuitively, a universal model of a type specification is maximally nondeterministic

and therefore exhibits all the behavior allowed by that specification. That is, all models

of the specification are implementations of the universal model [Hes88]. Because of this

property, a universal model of a specification, if it exists, is also as "abstract" as possible.

Therefore, if a specification has a universal model we can identify the carrier set of each

type in the universal model with the abstract values of each type. Furthermore, we will

show that if we have a simulation relation between a universal model and itself that

witnesses < then we can conclude that < is a subtype relation.

Instead of defining universal models using sorted homomorphisms on algebras, the

following definition uses the imitates relation, which is more convenient for us. However,

since sorted homomorphisms do not map objects of one type to objects of another type,

the following definition does require that every environment imitates some environment

of the universal model where each identifier is mapped to an object of the same type.

Definition 6.3.6 (universal model). Let E be a signature and let SPEC be a set of

E-algebras. Let OBS be a set of observotions. Then A is a universal model of SPEC

with respect to OBS if and only if for every algebra C E SPEC, for all sets of typed

identifiers X, and for all environments ic E ENV(X,C), there is some environment

77A E ENV(X, A) such that (C, 77c) imitates (A, 77A) with respect to OBS and for all

identifiers x E X, r7A(x) has the same type as 7t(x).

126

We say that an algebra is a universal model of a specification SPEC with respect to some

set of observations if it is a universal model of the set of SPEC-algebras with respect to

that set of observations.

For example, a maximally nondeterministic Mob-algebra is a universal model of the

specification Mob with respect to the set of observations that contains the single NOAL

program next(x), where x has nominal type Mob. To see this, suppose A is a maxi-

mally nondeterministic Mob-algebra whose carrier set for Mob is I plus all finite sets of

integers. Let C be a Mob-algebra. Let 7qc E ENV({x : Mob),C) be such that the set of

integers waiting in qc(x) is some set R. (That is, for all integers i, i E R if and only

if MIwaiting?(x,i)](C, qc[i/i]) = {true}.) Let 77A E ENV({x: Mob},A) be such that

mdx(x) = R. Then by the specification of Mob,

M[next(x)(C,tic) _ R = M[next(x)](A, 7A). (6.22)

So (C,iqc) imitates (A,rJA) with respect to this set of observations and thus A is universal.

Unfortunately, not every specification has a universal model. For example, the spec-

ification of the type Crowd given in Figure 5.1 has no universal model with respect to

type-safe NOAL programs. The reason is that different Crowd-algebras may have different

algorithms for their next operation, and since the next operation must be deterministic,

there is no single Crowd-algebra that captures all this behavior. Notice that the abstract

values of the type Crowd do not fully describe the behavior of Crowd objects, since from

the abstract value one cannot tell what waiting integer will be chosen by next, unlike

the abstract values of type PSchd.

When a specification has a universal model, however, it eases the problem of finding

subtype relations, as the following lemma shows.

Lemma 6.3.7. Let E be a signature and let SPEC be a nonempty set of E-algebras.

Let OBS be a set of observations. Let < be a binary relation on type symbols.

Suppose A is a universal model of SPEC with respect to OBS. Then < is a subtype

relation on the types of SPEC with respect to OBS if and only if for all sets of typed

identifiers X and for all environments q, E ENV(X, A) such that q7 obeys <, there

is some nominal environment 72 E ENV(X,A) such that (A,i 7r) imitates (A,172) with

respect to OBS.

127

Proof: Let A be a universal model of SPEC. Suppose that for all sets of typed iden-

tifiers X and for all environments rh E ENV(X, A) such that 71, obeys <, there is some

nominal environment q2 E ENV(X, A) such that (A, ir1) imitates (A, 172) with respect to

OBS. Let C E SPEC be an algebra and let q/c E ENV(X, C) be an environment that

obeys <.

Since A is a universal model of SPEC, there is some environment qi E ENV(X, A)

that obeys < and such that (C,r/c) imitates (A,9i1) with respect to OBS. Since it1

obeys <, by hypothesis there is a nominal environment 72 E ENV(X,A) such that

(A,rl) imitates (A, '72) with respect to OBS. By Lemma 4.2.2, the imitates relation with

respect to OBS is transitive. Therefore (C, ic) imitates (A,rq2) with respect to OBS. So

by definition < is a subtype relation.

Conversely, suppose that < is a subtype relation on the types of SPEC with respect

to OBS. Let X be a set of typed identifiers. Let 77 E ENV(X, A) be an environment

that obeys <. Since < is a subtype relation, there is some B E SPEC and some nominal

environment r7B E ENV(X, B) such that (A, i/) imitates (B, 77B) with respect to OBS.

Since A is universal, there is some nominal environment 72 E ENV(X, A) such that

(B, 71B) imitates (A, 772) with respect to OBS. Since the imitates relation with respect to

OBS is transitive, (A, 7 1) imitates (A,i7 2) with respect to OBS. I

As a corollary to the above lemma, if we have a universal model of a specification,

we only need to find a simulation relation between the universal model and itself that

witnesses a binary relation < to prove that < is a subtype relation.

Corollary 6.3.8. Let SPEC be a set of E-algebras. Let NomSig be a nominal signature

map. Let < be a binary relation on type symbols.

If A is a universal model of SPEC and if there is a simulation relation 1? between A

and itself for NornSig and < such that R? witnesses <, then < is a subtype relation on

the types of SPEC with respect to the set of type-safe NOAL programs over NomSig

and <.

Proof: Suppose that A is a universal model of SPEC and that there is a simula-

tion relation 1Z between A and itself that witnesses <. Let 771 E ENV(X,A) be an

environment that obeys <. Since R witnesses <, one can build a nominal environment

128

772 E ENV(X,A) such that 771 R'q 2 . By Theorem 6.2.3, (A,r 11) imitates (A, 1 2). Since A

is a universal model of SPEC, it follows by Lemma 6.3.7 that < is a subtype relation. I

As an example of proving that a binary relation is a subtype relation on the types

of a specification with a universal model, consider the specification IPT, with types

IntPair and IntTriple. Let NomSig be the nominal signature map of IPT and let

< be smallest binary relation on the types of IPT such that IntTriple < IntPair.

The algebra A given in Figure 2.5 is a universal model of IPT. Let 1? be the smallest

typed family of relations such that for all types T, if q E AT, then q R.T q, and for all

(ql, q2, q3), (qj, q2, q4) E AIntriple and (qj, q2) E Antpajr,

(qj, q2, q3) lIntPair (q1 , q2) (6.23)

(qj, q2) I'RItPair (qj, q2, q3) (6.24)

(q1 ,q2 ,q3) TZIntPair (ql,q 2,q 4). (6.25)

We showed earlier in this chapter that 1Z is a simulation relation. We now note that

1? witnesses < because every proper instance of IntTriple is related to an instance of

IntPair with the same first and second components. Since A is a universal model of

IPT, it follows by Corollary 6.3.8 that < is a subtype relation on the types of IPT with

respect to the set of all type-safe NOAL programs over NomSig and <.

6.4 Examples Proofs of Subtype Relations

In the following subsections we prove several examples of subtype relations with respect

to type-safe NOAL programs. All the examples were introduced earlier chapters, where

much smaller sets of observations were used.

6.4.1 Schedulers

In Chapter 5 we discussed the specification MCP, with three types of schedulers: Mob,

Crowd, and PSchd (see Figure 2.6 on page 39, Figure 5.1 on page 81, and Figure 4.2 on

page 63). The specification MCP is interesting because it involves a nondeterministic

type, Mob, and two incompletely specified types: Mob and Crowd. Furthermore, MCP

does not have a universal model.

129

Let < be the smallest reflexive relation on the types of MCP such that Crowd < Mob

and PSchd < Mob. (The relation < is depicted in Figure 5.2 on page 82.) In Chapter 5

we argued that < is a subtype relation on the types of MCP with respect to a set of three

NOAL programs. The following lemma shows that < is a subtype relation with respect

to all type-safe NOAL programs over the nominal signature map of MCP and <.

Lemma 6.4.1. The relation < described above is a subtype relation with respect to all

type-safe NOAL programs over the nominal signature map of MCP and <.

Proof: Let C be a MCP-algebra. Although there is no universal model of MCP, there

is an algebra, call it A, with the same carrier set, abstract functions, and operations as

C, except that the Anext~obIt operation is maximally nondeterministic. This algebra

A is a MCP-algebra, because the specification of Mob permits the neltMob-Int operation

to be nondeterministic.

Let us say that an integer i is waiting in a scheduler if the result of the generic invo-

cation waiting?(x,i) in an environment where x denotes the scheduler and i denotes

the integer i is true. Then we can define a homomorphic relation 1z between C and A for

the nominal signature map of MCP and < as follows. Let 1Z be the smallest typed family

of relations between C and A, such that for all types T, lZT is the identity on CT (which

is the same as AT), every proper instance of Crowd or PSchd is related to an instance of

Mob with the same set of waiting integers by lMob and in addition:

IZCrowd 9 IMob (6.26)

lZPSchd 9 TZob" (6.27)

By this construction relationships at types Crcwd and PSchd hold at type Mob and 7Z

witnesses <.

We now show that 1R is a homomorphic relation. Let X and environments il E

ENV(X, C) and r72 E ENV(X, A) be such that 77? R q2. Suppose g(i) is a generic invo-

cation of some nominal type T. If none of the identifiers in - have nominal type Mob, then

by construction rj(i) = 772 (i) and thus Mg(i)j(C, 771) = M[g(i)](A, 72). Since each 1? T

contains the identity relation on AT, it follows that M[g(i)](C, 7) 1?T M[g()](A,77 2).

So it remains to deal with generic invocations whose arguments have nominal type Mob.

In the following cases, suppose that x : Mob E X and i : Int E X.

130

" Suppose the generic invocation is ins(x, i). Let q be the only possible result of

M[ins(x, i)](C, i 1) and let r be the only possible result of M ins(x, i)(A,1 2).

Since III(x)Zob ?2(x), both 71,(x) and 72 (x) have the same set of waiting integers,

call it s. By the specification of ins in the three scheduler types, the set of waiting

integers for q is s U {i}, where i is 771(i). Since 7?1(i) ZInt 772(i) and Rrnt is the

identity, the set of waiting integers for r is also s U {i}. So by definition of IZMob,

q lKob r.

" Suppose the generic invocation is waiting?(x,i). Since 'l(x) TZNob r72(x), both

ir(x) and 172(x) have the same set of waiting integers. As above, the denotation of

i must be the same in both environments. So by definition of "waiting integer,"

the denotation of waiting?(x,i) must be the same in both environments. Since

?Bool is the identity on the carrier set of Bool, we have

.Ai wait ing?(x, i)](C, rl) TZB.ol .A[waiting?(x, i)](A, r/2).

* Suppose the generic invocation is empty?(x). As above, both ql(x) and q 2(x) have

the same set of waiting integers. So by the specification of the empty? operations of

the various types, the denotation of empty? (x) is the same in both environments.

" Suppose the generic invocation is next(x). Since rql(x) Jiob 772(x), both 7,(x) and

772(x) have the same set of waiting integers, call it s. By definition of R, either

12(x) denotes an instance of Mob, or rl(x) = 772(x) if 772(x) denotes an instance of

PSchd or Crowd. In the latter case, the result is trivial, so suppose 172 (x) denotes

an instance of Mob. Recall that the algebra A is defined so that

M[next(x)](A,,j 2) = s (6.28)

because the operation AnextMob-int is maximally nondeterministic. By the specifi-

cations of the three types, the set of possible results for M[next(x)](C, rq) must

be a subset of s. Therefore,

AMi next(x)](C, qj) _9 Mi4next (x)](A, 712). (629)

Since TIZn t is the identity relation on the carrier set of Int, it follows that

M[next(x)](C,i7i) lZint M[next(x)j(A,q 2), since this means that for each q e

131

M[next(x)j(C,7j1), there is some r E M[next(x)](A,772) such that q = r, or in

other words that M [next(x)](C,, q) _ M[next(x)j(A, i?2).

So this 1Z is a homomorphic relation. By construction 1Z is also V-identical and bistrict;

hence R is a simulation relation. Since 7 witnesses <, the result follows by Theo-

rem 6.3.2. 1

6.4.2 OneOfs

In this subsection we will show how the general subtyping rule given by Cardelli for his

immutable variant types [Car84] holds for our Oneof types. This example shows that

our definition of subtype relations encompasses Cardelli's rule for OneOf types. That is,

a OneOf type with fewer tags is a subtype of a OneOf type with more tags, provided each

type associated with a tag in the first OneOf type is a subtype of the corresponding type

in the second OneOf type.

We discussed Oneof types in Chapters 2 and 4, where they are used to model ex-

ceptions. We now introduce a slightly more general specification of OneOf types, which

properly treats tags whose associated types may have supertypes. A representative OneOf

type specification is given in Figure 6.2, where the type is abbreviated to 012. In a Oneof

type name, the order of the tag declarations (ni:Si) does not matter. The trait that

specifies the carrier set and abstract functions of OneOf types is given in Figure 2.7 on

page 40. Note that the value [T] operations are defined for all types T; their specification

uses the presumed subtype relation < that we will define below in this example.

Let S be a specification. The specification S describes the data found in the simplest

OneOf types and is a basis for the inductive construction that follows. Let <s be a

reflexive subtype relation on the types of S with respect to type-safe NOAL programs

over the nominal signature map of S and <s. We assume that, for every S-algebra C,

there is some S-algebra A and a simulation relation between C and A for the nominal

signature map of S and <s such that the simulation relation witnesses <s.

Let 0 be a specification that includes S and several Oneof types of the form

OneOf [n: Sl,. .. ,nk: Sk], where the Si are either types from the specification S or other

OneOf types of this form. (So that all the algebras that satisfy the specification 0 are

flat, as required for NOAL programs in Appendix C, we require that if an Si is a type

132

Figure 6.2: Specification of the type 012 = One~f In, S1 , n 2 S21.

012 immutable type
class ops [make..n, make-n2j

instance ops [hasTag?, value[TII
based on sort OneOf from One0f(n1 SI, n2 :S21

op make-n(c:Ol2Class, x: SI) returns(o:012)
effect o = maken 1 (x)

op rnake-.n&(:Ol2C0ass, x: SO) returns(o:012)
effect o = make..n2 (X)

op hasTag?(o:012, t: Tag) returns(b:Bool)
effect b = hasTag?(o, t)

op value[T](o:012, t: Tag) returns(r:T)
requires hasTag?(o, t)

&(t=n 1) =~S, T)
& n(=f2) = S2 < T)

effect ((t = n1) =>r = val-ni(o))
&(t= n2) => r = val-n&())

133

from the specification S, then that type is a type whose carrier set in all S-algebras is

flat. For example, we would disallow Onef [b:BoolStream, i: IntStream] as a type of

0, because the carrier sets of BoolStream and IntStream are not flat.) Let NomSig be

the nominal signature map of 0.

We inductively define a presumed subtype relation < on the types of 0 as follows.

As the basis, for all types Si and S2 from the specification S, Si < S2 if and only if

S1 <s S2. Furthermore, Tag _< Tag, TagClass < TagClass, and for all class types

OClass introduced by 0, OClass < OClass. For the OneOf types introduced by the

specification 0,

One0f[n, : S1,...,nj : Sj] < OneOf[n, : Tl,...,nj :Tj,...,nk : Tk] (6.30)
<* 'V(i E {1 . .j})Si < Ti.

That is, for OneOf types, one type is related by < to another only if the first has a subset

of the second's tags and the corresponding types are related by _<. Note that we do not

allow OneOf types to be recursively defined.

The next lemma says that < is a subtype relation with respect to the set of type-safe

NOAL programs over NomSig and <. In the proof we inductively build a simulation

relation with the properties required to show that < is a subtype relation.

Lemma 6.4.2. The relation < described above is a subtype relation on the types of 0

with respect to the set of type-safe NOAL programs over NomSig and <.

Proof: Let C be an O-algebra. Let C(s) be the SIG(S)-reduct of C. Since <s is a

subtype relation, there is some S-algebra A(s) such that every environment over C(s) that

obeys <s imitates a nominal environment over A(s). Since the specification of a OneOf

type of the form OneOf [nl :S1,..., nk: Sk] does not constrain the types Si, there is some

O-algebra A whose SIG(S)-reduct is A(s). Without loss of generality, we can assume that

each value ET] operation of A is maximally nondeterministic when its requires clause

is not satisfied, because this behavior is permitted by our specification of OneOf types.

We define a homomorphic relation between C and A for NomSig and < as follows.

First some terminology. We say that a OneOf object o has tag t if the result of

M [hasTag?(o,t)](C, q,,) is true, where 7,°(o) = o. We say that value[T] (o,t) is q if

the only possible result of M[value[T](o, t)](C, ,lo) is q, where 7,(o) = o.

134

By our assumption above, there is a simulation relation 1ZS between C(s) and A(s)

that witnesses <s. We define a homomorphic relation R?. between C and A by structural

induction on type expressions to be the smallest typed family of relations between C and

A, such that:

" Zs C 1?; that is, if T is a type of the specification S, then 1.T contains ,. .

" Let 01 = OneOf[n : Sl,..., nj : Sj] be a Oneof type introduced by 0. Then Ro,

is such that q io, r if q and r are both I or q and r are proper instances of some

OneOf type introduced by 0 such that q and r have the same tag, which is some

ni in the set of tags of 01 and

value[Si](q, ni) = q' (6.31)

value[Si](r, ni) r' (6.32)

q' ls i r'. (6.33)

* For all class types OClass introduced by 0, lOClasa is such that I in C is related

to I in A and the only proper object of type OClass in C is related to the proper

object of type OClass in A.

" We have not specified the type Tag in detail. But let us agree that it is gen-

erated by class operations of the form t(Tag), which we abbreviate to t for

all "tag names" t. Furthermore, two tag objects are the same only if they are

the result of the same operation t(Tag). We define "ZTag as the smallest rela-

tion between the carrier sets of Tag in C and A such that for all tag names t,

.M[t(Tag)J(C,0) lZTag M[t(Tag)J(A,). That is, lZTag only relates one tag object

to another if both are the "same tag."

Before showing that 7Z is a homomorphic relation, we first need to show that 7

witnesses < and satisfies Formula 6.1. This is proved by a (double) structural induction

on type expressions. That is, we show for all types T and for all types S such that S < T,

that 1R witnesses < and that Formula 6.1 holds. As a basis, the claim holds for all types

introdtced by the specification S, since Zs satisfies the claim by hypothesis. The type Tag

135

is only related to itself by < and by construction CTaglTagATag. Furthermore, a class type

introduiced by) is related only to itself by <, and by construction COClass OMlassAOClass.

For the inductive step, let 0) and 02 be OneOf types introduced by the specification

0 such that 01 < 02 and assume for all their component types S and T Formula's 6.1 and

6.16 hold. Since 01 < 02, 01 must have the form Oneof[ni : S1,... ,nj : SjI and 02 m ust

have the form Oneof[n :T,. . . , nj :Tj,... ,nk :Tk] where for z from 1 to j, Si :< Ti.

The inductive assumption is that the formulas hold for each pair of types Si < Ti where

E {l , . .. , j }. Then Col Ro2 Ao 2, because 01 has a subset of the tags of 02, and so

every proper eleient of Co. has the tag of some proper element of A 02, an(] because its

value at that tag is related to some element in A by lRsi, where Si is the type associated

with the tag. Suppose qlTo, r. Then by construction, q and r have the same tag, say ni,

and their values at that tag are related by TZs i . By the inductive hypothesis, Isz i g lzTi,

so their values at that tag are related by 1ZTi. So q Roo r by construction and therefore

1Zo, C lz 02

We now show that RZ is a homomorphic relation. Let X and environments 77, E

ENV(X,C) and 772 E ENV(X,A) be such that ?71 1? 172. Suppose g(i) is a generic

invocation of some nominal type T. If T is not a OneOf type and none of the identifiers

in : has a OneOf type, then for each xi : Ti, 771(xi) R s, 772(xi), because 1? does not relate

proper instances of Oneof types at the types of S and because 77, 1? 772. Since R s is a

homomorphic relation, we have M[g(i)](C, 71) 1.T Mlg(i)J(A, q2). So it remains to deal

with generic invocations involving the OneOf types. There are several cases.

* The generic invocation is make-n(x,y) for some tag name n and some identifiers

x : OneOf[. .. ,n: T,...]Class and y S where S < T. This generic invocation

has nominal type OneOf [. .. , n:T, ...]. Since qi 1 r772 , 7i(y) Rs 72(y), and thus

ql(Y) ZT 772(Y), because (S < T) => Rs C lT. So by definition of 1? at OneOf types,

M [make-n(x, y)](C, 771) RoneOf[.. , n:T,...] M [make--n(x, y) I (A, 772). (6.34)

e The generic invocation is hasTag?(x,y) for some OneOf type 0 and some iden-

tifiers x : 01 and y : Tag. This generic invocation has nominal type Bool.

Since 771 1Z 72, r7(y) and 772(Y) must denote the same tag name. Further-

more, 1Z only relates objects at a OneOf type if they have the same tag. So

136

M [hasTag?(x, y)](C, rh) = M [hasTag?(x, y)](A,q72). Since lZB.oo is the identity,

we have

M[hasTag?(x, y)](C, 71) lZBo M[hasTag?(x, y)](A,772). (6.35)

* The generic invocation is value [T] (x,y) for some type T, some OneOf type 01,

and some identifiers x : 0 and y : Tag. This generic invocation has nominal

type T. Since 77 ? q 2, qj(y) and 712(y) denote the same tag name. Therefore, the

requires clause for the appropriate value [T] operations is satisfied in C if and only

if it is satisfied in A. We chose A so that the value[T] operation is maximally

nondeterministic when its requires clause is not satisfied; therefore, if the requires

clause is not satisfied, every element of the result in C is related to some element of

the result in A by TRT, because < is reflexive and CTlTZT AT. So suppose the requires

clause is satisfied; that is, suppose that both 71(x) and 712(x) have tag 72(Y). By

definition of 1?o, it must be that

M[value[TI(x, y)](C, 71) RTT M[value[T](x, y)J(A, 772) (6.36)

So 1Z is a homomorphic relation.

The relation 1Z is also a simulation relation. It is V-identical, because s is V-

identical and R does not add new relationships between proper elements of the visible

types. It is also bistrict and satisfies Formula 6.1 by construction.

Since 7 is a simulation relation that witnesses <, by Theorem 6.3.2, it follows that

< is a subtype relation with respect to type-safe NOAL programs over NomSig and <. 1

6.4.3 Exceptions

As discussed in Chapter 5, a subtype may have fewer exceptions than its supertypes.

In this section we show that this rule also holds with respect to all type-safe NOAL

programs.

Consider again the specification M4, which consists of the types Mob and Mob3 as

specified in Figure 2.6 on page 39 and Figure 5.4 on page 95. The type Mob3 is like

Mob, except that it can also signal an exception "empty(nil)." It does this by returning

the denotation of make-empty (NE, nil(Null)) instead of make -normal(NE, i), for some

137

integer i (where NE abbreviates OneOf [normal: Int, empty: Null]). Since we are

concerned with exceptions, we again consider that the return type of the next operation

of type Mob is OneOf [normal: Intl. Let NomSiy be the nominal signature map of M4.

Let < be the smallest reflexive relation on the types of M4 such that Mob < Mob3 and

OneOf [normal : Int] OneOf[normal : Int, empty: Null].

Unlike the previous section, the types Mob3 and Mob are specified using the OneOf types.

Therefore we cannot separate tie proof of a subtype relationship for M4 into a proof for

non-OneOf types and a proof for OneOf types, as in the previous section.

Let C be an M4-algebra. Let A be an M4-algebra with the same carrier sets and ab-

stract functions as C but with a maximally nondeterministic nextMob3-It and value[T]

operations. Such an M4-algebra exists, because of the way the types are specified.

We define a simulation relation 1? between C and A for NomSig and < as follows.

Let 1Z be the smallest typed family of relations between C and A such that

* for each type T, 7 "T contains the identity on CT (which is the same as AT),

* TZMob3 relates all proper instances of Mob to instances of either Mob3 or Mob with the

same elements (waiting integers), and

* ROneOf[normal:Int,empty:Null] relates each instance q of OneOf [normal: Int] such that

value [Int] (q, normal) is some integer i both to itself and also to all instances r of

OneOf [normal: Int, empty: Null] with the same tag smch that value [Intl (r,

normal) is i.

It is straightforward to show that R is a homomorphic relation. Clearly R is also V-

identical, bistrict and satisfies Formula 6.1. So R is a simulation relation.

By construction . witnesses < and so < is a subtype relation on the types of M,4

with respect to all type-safe NOAL programs over NomSig and <.

138

Chapter 7

Hoare-style Verification for NOAL Programs

In this chapter we present a Hoare logic for the verification of NOAL programs. The

key idea is using simulation relations to translate assertions tailored to a subtype into

assertions tailored to a supertype. We also draw some conclusions about how a type

system aids verification and discuss the role that observable assertions play in verification.

Our verification technique has the property that if a subtype is not explicitly used in a

NOAL function definition, then it is ignored during verification of that function. Because

of this property, if one verifies a NOAL function and then later adds new subtypes to

some of the function's nominal argument types, then the verification does not have to be

repeated.

As usual, the specifications of each type's operations and the specification of each

recursively-defined NOAL function is an axiom. The axiom used for a particular generic

invocation is determined by the nominal type of the generic invocation's first argument

(that is, using static instead of dynamic overloading). When the program explicitly

passes an expression of nominal type S as an argument when the nominal type of the

corresponding formal argument is T, simulation relations are used to translate knowledge

about the actual expression from type S to type T.

A verification technique for NOAL programs is sound if whenever one concludes by

using that technique that a program satisfies its specification with respect to the set of

all type-safe NOAL programs, then that program does indeed satisfy its specification.

After presenting our Hoare logic, we show that it is sound.

139

140

7.1 A Hoare Logic for NOAL

In this section we give a Hoare logic [Hoa69] for NOAL programs. We take a total cor-

rectness approach, since our specifications require termination whenever the precondition

is met. Our logic is sound, but it is not complete, since we are unable to reason about

nontermination as would be required to deal with NOAL's lazy evaluation and angelic

choice expressions in a complete way.

Although NOAL is applicative, we use a Hoare logic because NOAL is nondetermin-

istic and because we are ultimately interested in verification of imperative programs, for

which Hoare-style reasoning is an accepted technique.

The fundamental formulas of a Hoare logic are called Hoare-triples. Hoare-triples are

written P {v +-- E} Q and consist of a precondition P, a result identifier v, an expression

E, and a postcondition Q. (The name of the result identifier can be chosen at will.) In

a Ioare logic for an imperative language, the precondition describes the state before the

execution of a statement, and the postcondition describes the changed state that results

from the statement's execution. In NOAL, however, expressions have results but do not

change the environment in which they execute. So in our logic, the precondition of a

Hoare-triple describes the environment, and the postcondition describes the environment

that results from binding the possible results of the expression to the result identifier

(v). So that the notation does not cause confusion, the result identifier in a Hoare-triple

cannot occur free in the precondition. Otherwise one might think that the execution of

E changes the binding of the result identifier in the surrounding environment, whereas

we are only using suggestive notation that shows what identifier will be used to denote

the possible results of E in the postcondition.

Definition 7.1.1 (Hoare-triple for SPEC). Let SPEC be a specification. Then

P {y +- E} Q is a Hoare-triple for SPEC if and only if E is a type-safe NOAL ex-

pression P and Q are SPEC-assertions, y has the same nominal type as E, and y does

not occur free in P.

We do not mention the specification name when it is clear from context.

Intuitively, P {v +- El Q is true if whenever P holds, then thb execution of E

terminates, and all possible results satisfy Q. The semantics of a Hoare-triple is given

141

by the following definition, which is similar to the definition of satisfies for function

specifications.

Definition 7.1.2 (models for Hoare-triples). Let SPEC be a specification. Let

P {v +- E} Q be a Hoare-triple for SPEC. Let X be a set of free identifiers that

contains all the free identifiers of P, E, and Q except v. Let A be a SPEC-algebra, and

'9 E ENV(X, A) an environment that is proper and obeys the presumed subtype relation

of SPEC. Let 77' be the environment that extends q7 by binding each free function iden-

tifier in E to the denotation in A of the corresponding recursive function definition. We

say that (A, -q) models P {v -- E} Q and write

(A,t7) P I{v -E} Q

if and only if whenever (A, 71))= P, then for all possible results q E M EJ (A, 77') the

following hold:

(7.1)

(A, 27[q/v]) = Q. (7.2)

For example, the Hoare-triple "P {v +- E} true" means that evaluation of E in

environments that model P terminates, since every algebra-environment pair models the

postcondition "true." If the precondition P is not logically equivalent to "false," then

there are no expressions E such that "P {v +- E} false" is valid, because no algebra-

environment pair models the assertion "false." However, for all expressions E and all

assertions Q, every algebra-environment pair models the Hoare-triple "false {v +- E} Q,"

since the precondition "false" cannot be satisfied.

We say that the Hoare-triple P {v +- E} Q is valid and write SPEC 1= P {v +- E} Q

when for all SPEC-algebras A and for all environments 77 E ENV(X, A) such that X

contains the free identifiers of P and E and Q, q is proper, and 77 obeys the presumed

subtype relation of SPEC, (A, 71) = P {v +- E} Q.

Figures 7.1 and 7.2 contain the proof rules for NOAL expressions. In these figures,

P, Q, and R are assertions, M is a term, and E, El, and so on are NOAL expressions.

The notation I- H, where H is a Hoare-triple, means that one can prove H using the

142

Figure 7.1: Axiom Schemes for verification of NOAL Expressions.

[ident] I- true {v - x} M[v/z] - M[x/z] x, v,z : T

(bot] I- false {v - bottomCT])} true

[ngop] F true {v 4-To) v = T

Pre(g§_T) observable,
[ginvoc-a] - Pre(ggT) {y +- g(') } Post(g..T) i: S and y : T formals

of spec of 99-T

Pre(f) observable,
[fcall-a] - Pre(f) {y - f(i)) Post(f) X: S and y : T formals

of spec of f

proof rules. A proof rule of the form:

hi, h2

C

means that to prove the conclusion c one must first show that both hypotheses hi and

h2 hold. Rules written without hypotheses and the horizontal line are axiom schemes.

Each rule is named, for convenience in proofs. The name of a rule appears to the left

of that rule. To the right of some of the rules are conditions on types and identifiers.

Some of the conditions require an identifier to be fresh, which means it is not in the set of

free identifiers of either the desired precondition (written P in the figures) or the desired

postcondition (Q). 0%

In the following list we discuss each of the rules in Figures 7.1 and 7.2 and explain

the conditions that accompany each rule. In the discussion we fix a specification SPEC

with presumed subtype relation <. All assertions mentioned are SPEC-assertions.

e The rule [ident] is an axiom scheme for all types T, for all identifiers x and v of

nominal type T, and for all terms M. The notation M[x/z] means M with all free

occurrences of z replaced by x.

The rule says that the only possible result of an expression x is tiie value of x.

Furthermore, it allows one to draw immediate consequences of the equality of v

143

Figure 7.2: Inference rules for verification of NOAL expressions.

-P {y-- (fun (x:) g(i)) (.)} Q E: ,
[ginvoc-b] P _ +- O- S

[flib] -P {yF(fy (fun (i:s) f(:)) (E-)} Q E: 5,
IP {ly - f()} Q O<

P f{v, -- El,} R1, ..., -P I v. +- E.}
v, Rs, x, Rl[:/x] R',

[comb] R:E/x: S freshv,. lRs x. F- PRlI/x1] '.
F- R' " R' {y[z/x -Eo} Q[./1I

I-P {y-- (fun (Z: 9) Eo) (E 1 ,...,E.)} Q

F- P {v +- E1 } true,
-P&R 1 {v4-E} v=true, 1-P&R, {y -E 2} Q,

[if] F & P&R 2 {v - E} v = false, - P &R 2 {y +- E 3 } Q
F-P&R3 {y,-E 2 } Q, F-P&JR3 {y -E 3 } Q

F- (R IR2IR3) = true
F P {y +- if E1 then E 2 else E3 fi} Q

[erratic FP {y - E}Q,F- P {y - }Q
[errtic]F- P {y +- El []E 2 } Q

[angelic] F- P {y +- Ei} Q, F- P {y - E 2} Q
F P {y +- El V E 2} Q

[isDef FP {y - E} true
F-P {y +- isDef?(E)} y = true

F- P > P, F-P {y - E} Qi, F- Q, Q P, P1 , Q Q1
[conseq] F- l {-} Q observable,

y not free in P

[carry] F-P {y_-E} Q PandQ
F-P {y +- E} P& Q

observable
[rename] F- P[./i- {y[i/x] - E[g./x} Q[/ix] x:T

F- P {y E} Q z: T fresh

144

and x. This is useful because sometimes "v = x" is not observable and the rule of

consequence (below). does not allow one to use assertions that are not observable.

" The rule [bot] says that the execution of bottom[T] never terminates.

" The rule [ngop] is an axiom scheme for all type symbols T in the specification SPEC.

(Recall that To is the desugared form of the expression T.) The rule [ngop] says

that this invocation returns the class object with the same name.

" The rule [ginvoc-a] is an axiom scheme for all operation specifications of SPEC. We

denote by Pre(g§_T) the precondition of the operation specification named g with

nominal signature S ---+ T. Similarly, Post(g§.) is that operation's postcondition.

Notice that the axiom only describes the effect of a generic invocation where the

actual argument expressions and the result identifier are exactly the same as the

formal arguments and the formal result used in the specification of g (with nominal

signature S --- T).

For soundness, we require that the precondition of this axiom scheme be observable.

This restriction ensures that the precondition is meaningful even when the actual

arguments do not have the nominal types of the formals.

" The rule (fcali-a] is an axiom scheme for all recursively-defined NOAL functions.

The precondition and postcondition of a function come from its specification. As

with [ginvoc-a], we require that the precondition of this axiom scheme be obser-"Lble.

" The inference rule [ginvoc-b] handles the general form of a generic invocation. To

prove a triple involving a generic invocation one is obliged to first rewrite the generic

invocation from its general form into one where the actual argument expressions are

first bound to identifiers. The types of these identifiers must be chosen carefully so

that an instance of the rule [ginvoc-a] will apply. However, since we wish to reason

based on nominal type information and since the nominal type of the first argument

determines the nominal type of the result in NOAL, the nominal type of the first

argument cannot be changed. Furthermore, the types of the other arguments are

constrained so that the rewritten expression type-checks.

145

9 The inference rule [fcall-b] is like [ginvoc-b] in that it requires one to rewrite a

general function call so that the argument expressions are first bound to identi-

fiers. These identifiers should be chosen to match the formal arguments from the

specification of the function.

e The inference rule [comb] handles combinations that may include coercions between

types. The rule as a whole says that to prove that the desired triple holds, one

must first characterize each actual argument expression E with some assertion Ri

according to the nominal type of Ei. Then one must translate each Ri into an

assertion M? that describes the actual argument according to the nominal type of

the corresponding formal, xi. This translation uses the axioms that characterize

a simulation relation. We will have more to say about such translations below.

Finally one must prove that the conjunction of the R is strong enough to show that

the possible results of the body of the combination satisfy the desired postcondition.

The fresh identifiers - are used to hide bindings of - in the assertions so that the

proper scope applies. The notation y[/Exl means zi if for some i, xi is y. The

identifiers zi must be fresh to avoid capture problems.

* The inference rule [if] allows one to reason about if expressions whose boolean

expression (EI) may be nondeterministic. Before explaining the rule in general we

consider two special cases.

If the boolean expression E1 is deterministic, let the assertion R3 be "false" and let

R2 be -R 1.The assertion R must then characterize the value of E1 in the following

sense. If the desired precondition and R1 both hold, then the only possible result of

E1 is true, otherwise if the desired precondition and -'R, both hold, then the only

possible result of E1 is false. Then one has to prove that the desired precondition

and R, together are strong enough to show that the desired postcondition holds

on the results of E 2 (the "true" arm) and that the desired precondition and -,R 1

are strong enough to make the postcondition hold on the result of E 3 (the "false"

arm). Since R 3 is "false" and R 2 = -R 1, the other hypotheses follow trivially.

If the boolean expression E1 has as possible results bot true and false when the

desired precondition holds (e.g., if E1 is true fj false), then let R 1 and R 2 be

re~ra N I III1 I~llnlll Il

146

"false" and let R 3 be "true." One must then show that El terminates and that

the possible results of both E2 and E 3 satisfy the desired postcondition when the

desired precondition holds. The other hypotheses follow trivially.

In general, the assertion R 1 should characterize when El has true as its only possible

result, R 2 should characterize when El has false as its only possible result, and

R 3 should characterize wvhen El is nondeterministic. 'I hen one has to show that

El terminates, that in each case the postcondition follows, and that all cases are

covered. One shows that all cases are covered by showing that (RIlJR 21R3) = true.

" The inference rule (erratic] says that the desired postcondition must follow from

the desired precondition for each expression.

" The inference rule [angelic] is analogous to the rule [erratic]. Although this rule

is sound, it fails to capture all the semantics of angelic choice in NOAL. That is,

an angelic choice expression where only one subexpression might fail to terminate

would still terminate, but our rule requires that both subexpressions terminate.

This incompleteness is caused by the inability of our logic to describe the possible

results of an expression separately from its termination.

" The inference rule [isDef] says that to prove that an isDef? expression halts (with

value true), one must prove that all the possible results of the argument expression

are proper.

" The general inference rule [conseq] is standard for Hoare logics, where it is often

called the "rule of consequence" [Hoa69]. It allows us to use a stronger precondition

and a weaker postcondition. The implications that appear in the hypothesis must

be provable from the traits of the referenced specification, using the proof rules and

axioms of those traits.

There are two conditions that apply to this rule. First, the preconditions and

postconditions w- ' , observable. This restriction ensures that implication has

the expected meaning. Second, the result identifier must not appear free in P; this

ensures that the conclusion is well-formed.

147

" The inference rule [carry] allows us to carry observable assertions from the precon-

dition into the postcondition. We only allow observable assertions to be carried

into the postcondition, because only observable properties that hold in an environ-

ment are guaranteed to hold when that environment is extended with a possible

result and because observability ensures that conjunction has the expected meaning.

However, observable preconditions are preserved by expressions, because NOAL is

an applicative language.

" The inference rule [rename] allows us to consistently rename identifiers.

A proof in our logic may also use formulas that are provable from the traits of the

referenced specification. (Such formulas are used as hypotheses in the rules [conseq] and

[if].) These traits always include the trait Bool and the equality trait. The equality trait

allows us to interpret the relation "=" that appears in terms as a congruence relation.

Formally, a proof of a Hoare-triple for SPEC is a list, where the last line in the list

is the desired Hoare-triple and each line in the list is either:

" a formula of the form I- Q, where Q is a SPEC-assertion that is provable from the

traits of SPEC,

" a translation axiom of the form v Rs x F- P' : € Q' where P' and Q' are SPEC-

assertions (as discussed below), or

" a formula of the form - P' {y +- E'} Q', where P' {y +- E'} Q' is a Hoare-triple

for SPEC, and the formula either is an axiom or follows from some previous lines

by the inference rules of our logic.

We translate assertions about subtypes into assertions about their supertypes using

simulation relations. The translations are used in the inference rule [comb], where they

appear as formulas of the form:

x ls y -P(x) = Q(y).

The above formula means that if the value of x : a simulates the value of y : S at type S

and P(x) holds, then Q(y) holds.

148

For example, in the proof of a program that referenced the specification IPT we would

use the following formulas for translating assertions about instances of IntTriple into

assertions about instances of IntPair:

t IZIntPair p I- t.first = i = p.first = i (7.3)

t 74iitPair p - t.second = i =. p.second = i. (7.4)

where t : IntTriple, p : IntPair, and i : Int. These formulas should be thought of as

universally quantified over the identifiers involved; that is, the identifier names do not

matter.

A proof in our logic may use such a formula as an axiom when the following conditions

hold. Let SPEC be a fixed specification. Let < be the presumed subtype relation of

SPEC and let NomSig be the nominal signature map of SPEC. Consider the formula:

xl7sy - P = ' Q (7.5)

where P and Q are SPEC-assertions, x : a does not appear free in Q, and y : S does not

appear free in P. We take the above formula as an axiom if and only if for all SPEC-

algebras C, there is some SPEC-algebra A, such that there is a simulation relation

1? between C and A for NornSig and < such that R witnesses <, and the following

property holds for all such A and all such 1?: for all sets of typed identifiers Z that

includes the free identifiers of P and Q except x : a and y : S, for all environments

qc E ENV(Z U {x : a}, C) and rqA E ENV(Z U {y : S}, A) such that r/c is proper, 77c

obeys <,

(C, tic) P, (7.6)

/c(x) JZs 'A(Y), (7.7)

and for each type T and for each identifier z : T E Z,

17C(Z) lT IA(Z), (7.8)

it follows that

(A, 77A) = Q. (7.9)

149

As a practical matter, we expect that a small set of axiom schemes should characterize

all such translation axioms that one would need to use in a proof. For example, we need

two axiom schemes like the ones given above for translating assertions about instances

of IntTriple into assertions about instances of IntPair.

7.2 NOAL Program Verification

In this section we describe how to use the Hoare logic of the previous section to verify

NOAL programs. We also give several examples of program verification.

To verify a NOAL program, one first gives specifications for each recursive function

definition (see Chapter 4) and shows that the recursive function definitions satisfy their

specifications. Then onc can use our Hoare logic to show that, if the formals satisfy the

desired precondition, the program terminates and the possible results satisfy the desired

postcondition. That is, given a program whose body is the expression E, one must prove

F- P {v +- E} Q, where v is the formal result identifier from the program specification,

P is the program's precondition, and Q is its postcondition.

Two steps are required to verify a system of recursive function definitions. First, one

shows that for each function f, I- Pre(f) {y +- E} Post(f) follows from the proof rules,

where E is the body of f, y is the formal result identifier from the specification of f,

Pre(f) is the precondition from the specification of f, and Post(f) is its postcondition.

During this proof one can use the axiom schemes [fcall-a and [fcall-b], which implicitly

assume that each recursively defined function meets its specification. This allows one to

prove the partial correctness of function bodies containing recursive calls. The second

step is to prove that each function terminates whenever it is called with arguments that

model its precondition. This step is necessary, since otherwise one could implement a

recursive function specification with a body that simply called itself recursively. (We do

not provide an explicit method for reasoning about termination.)

As a simple example of function verification, we show that the following function

fun sumFirst(pl,p2:IntPair): Int = add(first(pl),first(p2))

implements the specification sumFirst of Figure 1.4 on page 15 (which references the

specification IPT). Since there are no recursive calls, this function always terminates. So

150

it suffices to show using our Hoare l6gic that

- true {i +- add(first(pi),first(p2))} i = p1.first + p2.second

We find it easiest to start with the formula to be proved as a goal and to use the

rules of inference to generate subgoals. Since the body of sumFirst consists of a nested

generic invocation, the conclusion must follow from the rule [ginvoc-b]. So we rewrite

the body of sumFirst as follows:

(fun (i:Int, j:Int) add(i,j)) (first(pl), first(p2)).

(We choose the identifiers i and j to match the axiom for add.)

The rewritten body is a combination, so we must use the rule [comb]. We can see

from the rule [comb] that we have as subgoals proving:

true {vl - first(p1)} vI = pl.first (7.10)

true {v2 -first (p2)} v2 = p2.first (7.11)

vi TI,,t i F- (vi = pi.first) =. (i = pl.first) (7.12)

v2 TInt j F- (v2 = p2.first) = (j = p2.first) (7.13)

- i = pl.first & j = p2.first {k +- add(i,j)I k = pl.first + p2.first. (7.14)

The first two subgoals follow from the instance of the axiom scheme [ginvoc-aj for

first

F- true {i +- first (p)} i = p.first (7.15)

and the inference rule [rename].

The translation axioms for Int are valid because if 1? is a simulation relation, then

1Iznt is the identity on integers.

To prove the final subgoal, we use the axiom scheme [ginvoc-a] for add:

F- true {add(i,j)} k = i + j (7.16)

and the rules [conseq] (used twice) and (carry].

Since all the hypotheses of the [comb] rule hold, the desired result follows.

Notice that our proof of the correctness of sumFirst does not mention the type

IntTriple. This is what we mean by using nominal type information in verification.

151

As an example of program verification, consider the specification is2vaiting given

in Figure 4.1 and the program

waiting? (m,2).

The following lemma verifies that this program is correct. The proof goes into more

detail than the previous example.

Lemma 7.2.1. Suppose that I- true {v2 +- 21 v2 = 2 where v2 has nominal type

Int. Suppose further that for all identifiers m, vi, z : Mob and v2, i : Int, the following

translation axioms are valid:

vl ZMbmF(2Ez)=(2Evi) (2 E z) = (2 E m) (7.17)

V2 Int i 2 V=2 i = 2 (7.18)

Then - true {b +- waiting?(m,2)} b = (2 E m).

Proof: By the inference rule [ginvoc-b], it suffices to show that

F true {b +- (fun (re:Mob, i:Int) waiting?(m,i)) (m,2)} b = (2 Em). (7.19)

To show this, we use the rule [comb].

Let R 1 be the assertion (2 E m) = (2 E vi), where b: Bool and vi : Mob. Let R 2 be

the assertion v2 = 2, where v2 : Int.

By the axiom [ident] we have

F- true {vi +- ml (2 E vi) = (2 E M). (7.20)

By the hypothesis, we have I- true {v2 +- 2} v2 = 2. This is the first set of hypotheses

for the [comb] rule.

Now we must translate the assertions (2 E m) = (2 E vi) and v2 = 2. Since m is a

free identifier of the precondition and appears free in the first assertion, we rename it to

z. The second hypothesis of this lemma has the necessary translation axioms.

By the axiom scheme [ginvoc-a and the specification of Mob, we have

- true {b +- waiting?(mi)} b = i Em. (7.21)

152

Since (2 E z) = (2 E m) & i = 2 =* true, by the inference rule [conseq] we have

F (2 E z) =(2 E m) & i =2 {b - vaitig?(mi)} b = i Em. (7.22)

The assertion (2 E z) = (2 E m) & i = 2 is observable, since vaiting?(z,2) is a

characteristic observation for (2 E z), (2 E m) is similarly observable, and the rest of the

assertion can be observed by simple combinations of the operations of types Bool and

Int. So by the inference rule [carry] we can carry the precondition into the postcondition

and obtain as our postcondition:

(2 E z) = (2 E m) & i = 2&b--= i Em. (7.23)

Now we use the axioms about equality to show that

S(EZ)(2 E m) & i = 2 &b = i Em b = (2 E z). (7.24)

So by a final application of [conseq] we have the desired third hypothesis of the [comb]

rule:

F- (2 E z) = (2 E m) & i = 2 {b - waiting?(mi)} b = (2 E z), (7.25)

Since we have shown all the hypotheses of the [comb] rule, we can conclude that

I- true {b *-- vaiting?(m,2)} b = (2 Em). (7.26)

U

Again, the above proof makes no mention of the subtypes.

To show how our logic handles explicit use of inclusion polymorphism, we will show

that

F- true {j +- sumFirst(make(IntPair,1,2), make(IntTriple,4,5,6))} j = 5.

Since this expression consists of a nested generic invocation, we must use the [ginvoc-

b3 rule to rewrite our program as follows:

(fun (pl ,p2 : IntPair) sumFirst (pl,p2))

(make(IntPair,1,2), make(IntTriple,4,5,6)).

We now must use the [comb] rule.

153

It is easy (although tedious) to show that the first set of hypotheses of the [comb]

rule hold:

F true {vl +- make(IntPair, 1,2) } vi.first = 1 (7.27)

- true {v2 +- make (IntTriple,4,5,6)} v2.first = 4, (7.28)

where vi : IntPair and v2 : IntTriple.

We take as translation axioms:

v, RzintPair p1 -(vl.first = 1) = (pl.first = 1) (7.29)

v2 l ZItpair p2 F- (v2.first = 4) : (p2.first = 4). (7.30)

We can show the final hypothesis of the [comb] rule using the axiom scheme [fcall-a]

and the inference rules [conseq] and [carry]. The axiom for sumFirst is:

F- true {i +- sumFirst (pl,p2)} i = pl.first + p2.first. (7.31)

Using the rules [conseq], [carry], and the trait Int we can conclude:

- pl.first = 1 & p2.first = 4 {i +- sumFirst(pl,p2)} i = 5. (7.32)

So by the rule [comb], the desired result follows.

7.3 Soundness of Hoare-style Verification for NOAL

In this section we show the soundness of the Hoare-style symbolic verification technique

for NOAL programs described in the previous section.

For soundness to hold we must have simulation relations that witness the referenced

specification's presumed subtype relation <. It is not enough to know K is a subtype

relation, because we need to ensure that the resulL nf each expression can be simulated at

the expression's nominal type. Furthermore, our translation axioms depend on simulation

relations.

We also need to assume that certain assertions are observable as required by our

Hoare logic. These assumptions ensure that if a precondition holds in an environment

that obeys a subtype relation, it also holds in nominal environments that the first envi-

ronment simulates. We can then find the operation or function's effect using the nominal

environment.

154

The following lemma is the essential step in proving the soundness theorem for our

Hoare logic. It says that if some Hoare-triple is provable, and one has an algebra-

environment pair that models the precondition, then one can build a nominal algebra-

environment pair that models the triple. Soundness follows directly.

The lemma's proof is by induction on the length of proof in our Hoare logic. The

interesting cases are the axiom schemes [ginvoca-a], and the rules [comb], [conseq] and

[carry] since these are the rules where there is a substantial difference from standard

Hoare logics. In the [ginvoc-a] rule one builds a nominal environment that the given

environment simulates. Because the precondition is observable, the nominal environment

also models the precondition. Since we know what operation is executed by the generic

invocation in the nominal environment, we can use the type specification to show that the

expression terminates and the postcondition holds for the nominal environment. In the

rule [comb) we use the semantics of the translation axioms to build the required nominal

environments. In the proofs of the rules [conseq] and [carry] we use the observability of

the assertions involved to show that implication and conjunction mean what we expect.

Lemma 7.3.1. Let SPEC be a specification. Let < be the presumed subtype relation

of SPEC. Let F be a system of mutually recursive NOAL functions. Let C and A be

SPEC-algebras.

Suppose that < is a reflexive and transitive subtype relation on the types of SPEC

with respect to type-safe NOAL programs, < is safe with respect to NomSig, each func-

tion f, E F satisfies its specification, the only type related to each visible type T by _< is

T itself, and R is a simulation relation between C and A for NomSig and < such that R

witnesses <.

Then for all Hoare-triples for SPEC, P {y + El Q, such that the free function

identifiers of E are the fi, for all sets X of typed identifiers such that X contains all

the free identifiers of P and E and Q except y, the following condition holds whenever

I- P {y +- E} Q: for all environments 77c E ENV(X, C) that are proper and obey

<, for all nominal environments 71A E ENV(X, A), if ;7c 1 TiA and (C, 'ic) I= P, then

"A [P] = true, and for all possible results r E M EJ(A, 77A), r 6 1, and (A, 77A.[r/yI) Q.

Proof. (by induction on the length of proof in the Hoare logic.)

155

Let Z be the set of typed function identifiers f1. To find the set of possible results of

a NOAL expression with free function identifiers from Z one needs an environment that

is defined on the function identifiers in Z. However, since there is only one denotation for

a recursively defined NOAL function in a given algebra, there is only one way to expand

a given environment to one that maps the function identifiers in Z to their denotations

in that environment's range. Furthermore, if 77C 1Z 77A, then the expansions of 77c and 77A

are also related by RZ, by Lemma 6.2.2. So to avoid notational complications, we do not

mention this expansion below.

We shall often use the following property. If 77C T 77Aand t7c is proper, then 77A is also

proper, since 1 is bistrict.

For the basis, we show that the result holds for each of the axiom schemes.

" Suppose the proof consists of an instance of the axiom scheme [ident]

I- true {v +- x} M[v/z = Mfx/z

for some identifiers x, v, and z of some type T. Let X be a set of typed identifiers

that includes x : T but not v : T. Let 77c E ENV(X, C) be proper and obey <. Let

'IA E ENV(X, A) be a nominal environment such that 7C RT T. It is trivial that

(C,,qc) = true and that j[true = true. By definition, MIlx](A,'iA) = {7A(X)}.

Since i/c is proper 77A(x) is also proper. Finally, it is trivial that (A, qA[7iA(X)/VI) I-

M[v/z] = M[x/zI.

" Suppose the proof consists of an instance of the axiom scheme [bot]

F- false {v +- bottom [T] } true.

Then the result follows trivially, since no environment can model the precondition

"false."

" Suppose the proof consists of an instance of the axiom scheme [ngop]

I- true {v +- To) v = T

where v has nominal type TClass. (This return type is uniquely determined by

T, because of the restrictions of our specification language.) Let X be a set of

156

typed identifiers that does not contain v : TClass. Let 7lc E ENV(X,C) be

proper and obey <. Let 77A E ENV(X, A) be a nominal environment such that

'qc R 77A. It is trivial that (C, 7c) true and that -[true = true. By definition

of when an algebra satisfies a specification (see Chapter 2), the only possible result

of M[TO]J(A, 77A) is the proper object of type TClass that is the result of the trait

function "T," call it TA. So (A,TA[TA/vI) = v = T.

" Suppose the proof consists of an instance of the axiom scheme [ginvoc-a]

I- Pre(g _r) {y +- g(i)} Post(g§-r)

where the i : S are the formal arguments from the specification of the operation

g with nominal signature S --- T and y : T is the formal result identifier from that

specification of g.

By the restrictions of our specification language, the types of the formal arguments

uniquely determine the type of the formal result and hence the precondition and

postcondition. That is, the specification SPEC only contains one operation spec-

ification for g with this nominal signature. This means that SPEC-algebras have

an operation named g9-T , but they cannot have operations named gg. for r $ T.

Let X contain the formals xi but not y : T. Let 7c E ENV(X, C) be proper

and obey _<. Let 7A E ENV(X, A) be a nominal environment such that 77C R 7A.

Suppose that (C,7c) = Pre(g..T). Since by hypothesis this precondition is ob-

servable, (A, 77A) 1= Pre(g§_ T) by Lemma 5.2.4. Since 77A is a nominal environment,

by Lemma 4.4.3

i7-[Pre(g9.0) = true. (7.33)

Since 77A is a nominal environment,

M[g U)I(A, 7A) = A -T(r(7)). (7.34)

By definition of when an operation satisfies its specification, for all possible results

r E AgT (7(i)), r $ 1 and 7A[r/y][Post(g9..r)] = true.

" Suppose the proof consists of an instance of the axiom scheme [fcall-al

F- Pre(f) {y -- f(U)} Post(f)

157

where the X- § are the formal arguments from the specification of the NOAL

function f with nominal signature S -- T and where y : T is the formal result

identifier from this specification. Let X contain the formals xi but not y : T. Let

rqc E ENV(X,C) be proper and obey <. Let 77A E ENV(X,A) be a nominal

environment such that i/c I 7.

Suppose that (C, lic) H Pre(f). Since by hypothesis the precondition is observable,

(A,r/A) == Pre(f) by Lemma 5.2.4. So by Lemma 4.4.3, i7Pre(f)] = true.

By hypothesis, f satisfies its specification. So by definition of when a NOAL func-

tion satisfies its specification, for all possible results r E Mif(U)I(A,rA), r _

and (A, rl,7r/y]) Post(f).

For the inductive step, we suppose that the result holds for all proofs of length less

than n. Suppose that we are given a proof of length n > 1. The last step of the proof must

be either an axiom or the conclusion of an inference rule in our proof system. The axioms

were covered above, so it remains to deal with each of the rules of inference. Since all the

conclusions of the rules of inference have a similar form (- P {y +- E} Q) we establish

some conventions here instead of repeating them in what follows. Let the nominal type

of the expression (E) be T. Let X be a set of typed identifiers that contains all the free

identifiers of P, E and Q except the result identifier y : T. Let rqc E ENV(X, C) be

proper and obey <. Let r7A E ENV(X, A) be a nominal environment such that qC 1? 7)A.

* Suppose the last step is the conclusion of the rule [ginvoc-b]:

F P {y +-g(E)} Q.

The hypothesis of this rule

F- P fy ,-- (fun (X': S) g(X-)) (/)

must therefore appear in an earlier step. Since by definition of NOAL,

the](c c (.35)

the result follows.

158

" Suppose the last step is the conclusion of the rule [fcall-b]. Then the claim follows

as for the rule [ginvoc-b].

* Suppose the last step is the conclusion of the rule [comb]:

-Pfy *- (fun (U: S) g(xi)) (E,,..., E,,)} Q.

Suppose (C, tic) = P.

For each i from 1 to n, there is some earlier step in the proof of the form - P {vi 4-

EJ) R. Let ri E M[EJ(A, 7lA) be a possible result of the argument expression Ej,

whose nominal type is a,. By the inductive hypothesis,

1-4P] = true, (7.36)

ri : ._, and (A, l7A[ri/vi]) 1= R. By Lemma 6.2.2 and Lemma 6.2.1, each qi E

M[EJ(C,,lc) is such that qj l. ri.

There must also be some step in the proof of the form

vi is?, Xz I- R[./x =: . (7.37)

To use this translation axiom we show how suitable versions of the above envi-

ronments satisfy the conditions for a translation axiom. We define the following

environments:

77C d- nC[vCc(i)/z1 (7.38)

'A d= nA[77A(i)/Z- (7.39)

By construction, 77' R i7 r. By the above, for each i, (C, 1l' qi/v,]) k R'i[/zl-' and

the environment ?Cq(qj/vj] is proper. Since < is reflexive and transitive, < is safe

with respect to NomSig, and E is type-safe, the environment ?C[qj/vi] obeys < by

Lemma 3.6.5. So by the translation axiom quoted in the proof, (A, i'fri/xi]) fzRj.

By definition of NOAL, r is a possible result of the entire combination expression

only if r E MIEo(A,' [iIx1). There must be a step in the proof of the form

R' & ... & R" {y'+- Eo} Q[i/xI, (7.40)

159

where y' is y[i/x]. By construction,

(A, 71A'f/ij) = R & ... & R.. (7.41)

Since r/'[/ix] R q/i"1/], by Lemma 5.2.3,

(C~rc[,lxl) F= YI & ... & I,.(7.42)

By the inductive hypothesis,

r$_ (7.43)

and (A, (v'[f*/x)[r/y') H Q[:iJ. So by undoing the renamings, we have

(A, (r/A [F'l])[r/y]) Q. (7.44)

Since the z are fresh,

(?A[rly])[Flz = (??A[F/I[r/yI, (7.45)

and therefore

(A, (rA/[r/y)[F/Z) J= Q. (7.46)

Since the Z' do not occur free in Q, by Lemma 5.2.6,

(A,r/A fr/y]) = Q. (7.47)

* Suppose the last step is the conclusion of the rule [if]:

H-P {y +- if El then E2 else E3 fi} Q

Suppose (C, r/c) = P.

There must be an earlier step in the proof of the form I- P {v - E1} true. So by

the inductive hypothesis,

iF[4PI = true, (7.48)

and for all ri E M[El(A, iA), r1 $3 1.. Since E1 has nominal type Bool and no

other types are related to Bool by <, each ri must have type Bool.

There must be an earlier step in the proof of the form I- P & R1 {v +- E1 } v = true.

By the inductive hypothesis, if (C, ic) 1= P & R, then M[EJ(A,77A) = {true}.

160

Furthermore, there must be an earlier step in the proof of the form I P & R, {y -

E2 } Q. So if (C, tc) 1= P & R1 , then for all r2 E M iE 2 I(A,7A), r2 and

(A, r/A[r2/y]) = Q.

There must also be earlier steps in the proof of the form - P & R2 {v *-- E1 } v =

false and I- P & R2 {v +- E3 } Q, As above, if (C, ic) P & R2 , then for all

r3 c M E](A, 9A), r3 # 1 and (A,r/A[r3/yl) Q.

There must also be earlier steps in the proof of the form - P & R 3 {E 2 } Q and

- P & R3 {E 3} Q. So if (C,r7c) = P & R 3 , then for all r23 E MJE21(A,r1A) U

M[E 3](A,rA), r23 1 I and (A, r/A[r23/y]) Q.

Finally, there must be an earlier step in the proof of the form (R1 IR 21R3) = true.

Since (C, 77c) I- P, it follows that for some i from 1 to 3, (C, 77C) H P & Ri. So by

the inductive hypothesis, YJ[P & RiJ = true. Let r be a possible result of the if

expression in (A, 77A); that is suppose that

M M[E2](A, lA) if r = true
r E U .MI[E3I(A,r/A) ifr= false (7.49)

riEM[EI(AtA) {.L} otherwise

Then r z/ I, because by the above, the only possible results of E1 are either

true or false. Furthermore, for each i such that 7-IP & RiJ = true, r 6 1 and

(A, r7A[r/y]) H Q by the above.

* Suppose the last step is the conclusion of the rule [erratic]:

- P {y +- El 0 E 2} Q

Suppose (C, 77C) = P. There must be earlier steps in the proof of the form F-

P {y +- E1 Q and - P {y +- E2 } Q. Each possible result of El 0 E 2 is a possible

result of either E1 or E2 . By the inductive hypothesis, i-A[P] = true, and for each

possible result r of either El or E2 in (A,r7A), r j# I and (A, r7A[r/y]) H Q.

* Suppose the last step is the conclusion of the rule [angelic]. Then the result follows

as for the rule [erratic], since each possible result of E1 V E 2 is a possible result of

either E1 or E 2 .

161

* Suppose the last step is the conclusion of the rule [isDef]:

F- P {y +- isDef?(E)} y = true

Suppose (C, ric) = P. There must be an earlier step in the proof of the form

- P {y +- E} true. By the inductive hypothesis, j-[P] = true and for all r E

M[EI(A, 7A), r 1 I. Therefore, by definition of NOAL, M[isDef?(E)](A, 7A) =

{true}. Furthermore, since true is the only possible result it only remains to show

that (A, ?7A[true/y]) H y = true, which is trivially true.

* Suppose the last step is the conclusion of the rule [conseq):

SP {y -E} Q

Suppose (C, r/c) = P. Since P is observable, by Lemma 5.2.4 and Lemma 4.4.3,

TA-[P] = true.

There must be a step in the proof of the form F- P = P 1. In general, P1 and Q,

may have more free identifiers than P and Q. For example, if i has nominal type

integer, then the formula "true = i = i" and its converse are both valid. Let z-: S"

be a tuple of all the free identifiers of P and Qi except for the result identifier y : T

that are not in X (i.e., that are not in the domain of qic). Let qE Cg be a tuple of

proper elements. Since < is reflexive, rc[f/z1 obeys <. Since 1Z witnesses <, there

are "E Ag such that

7C[If/Z ?A[F'/Z. (7.50)

Notice that 77A[F/z is nominal. Since P = P is valid in all nominal environments,

?7A[r/z][P P11 = true. (7.51)

So by definition,

(C, ric[q/]) 1 P :::€ P1. (7.52)

Therefore, by Theorem 5.2.5,

W(C /4z) - P:i . (7.53)

162

There must also be a step in the proof of the form I- P1 {y +- E} Q1. By the

inductive hypothesis and the above,

7A[r'/zIPi] = true (7.54)

and for all r' E M[EI(A, TA(f"/i), r' 6 1, and (A, (1A[F/z1)[r'/y]) t Q1.

Finally, there must be an earlier step in the proof of the form I- Q, =* Q. Since

E is type-safe, < is reflexive and transitive, and < is safe with respect to NomSig,

by Lemma 3.6.5 (r7A[i/i)(r'/y obeys <. Since Q, and Q are observable, by Theo-

rem 5.2.5
(A, (qa [Fi/z)[r'/y]) = Q (7.55)

Since the zi are not free in Q, by Lemma 5.2.6,

(A, 7A[r'/y]) 1= Q. (7.56)

* Suppose the last step is the conclusion of the rule [carry]:

-P {y+-E} P&Q

Suppose (C, 71c) = P. There must be an earlier step in the proof of the form

- P {y +- E} Q. By the inductive hypothesis, i A4PJ = true and for all r E

M[E(A, 77A), r I and

(A, 71A[r/yI) = Q. (7.57)

Since -JPJ = true and TIA is nominal, (A, 7A) P. Since < is reflexive and

transitive and < is safe with respect to NomSig, by Lemma 3.6.5, 77Afr/yI obeys

<. Since y is not free in P, < is a subtype relation, 77A[r/y] obeys < and P is

observable, by Lemma 5.2.7,

(A, hA[r/y]) P. (7.58)

Since P & Q is logically equivalent to -,(P = -,Q), P and Q are observable, and

I1A[r/yj is proper and obeys <, by Theorem 5.2.2 and Theorem 5.2.5,

(A, ?lA[r/y]) H P & Q. (7.59)

163

e Suppose the last step is the conclusion of the rule [rename):

P {y +- E} Q

Since the identifiers z- are fresh, the possible results of E[i-/x in 27r[7c(i)/z are

the same as the possible results of E in (C, 77c).

1

The following theorem is the soundness theorem for our Hoare logic.

Theorem 7.3.2. Let SPEC be a specification. Let < be the presumed subtype relation

of SPEC. Let NomSig be the nominal signature map of SPEC. Let F be a system of

mutually recursive NOAL functions.

Suppose that < is reflexive and transitive, < is safe with respect to NomSig, the

only type related to each visible type T by < is T itself, each function fi E F satisfies

its specification, and that for every SPEC-algebra C there is some SPEC-algebra A and

some simulation relation 1Z between C and A for NomSig and < such that 1T witnesses

<. Then for all Hoare-triples P {y -- E} Q for SPEC, if the free function identifiers of

E are the fi in F and F- P {y +- E} Q, then SPEC 1= P {y +- E} Q.

Proof: Let P {y *- E} Q be a Hoare-triple, where X is the set of free identifiers

of P and the nominal type of E is some type T. Let C be a SPEC-algebra. Let rc E

ENV(X, C) be such that ic is proper and obeys <. Suppose that (C,' c) P.

By hypothesis, there is some SPEC-algebra A and some simulation relation 1Z between

C and A for NomSig and < such that 1Z witnesses <. Using this 1R we can build a nominal

environment 'qA E ENV(X,A) such that 17c 1Z 77A. By Lemma 7.3.1, -[P] = true,

and for all r E M[E(A,77A), r $ 1 and (A,r/A[r/yI) = Q. Since 77A is nominal,

(A,r7A) = P. Since R? is a simulation relation, by Lemma 6.2.2 and Lemma 6.2.1, for

each q E M[EJ(C,vic), there is some r' E M[E](A,7A) such that q ITr'. So q is proper,

since R is bistrict. Since ric[q/y] R? 77A[r/y], by Lemma 5.2.3, (C, 77c[q/y]) = Q. I

In the above theorem, we assumed that each recursively defined function appearing in

a program meets its specification. Since our technique for proving the partial correctness

of such functions is standard, we will not show formally that it is sound.

164

The following corollary says that our technique for the verification of programs is

sound. This is not a trivial consequence of the soundness theorem because the semantics

of our specifications require that each possible result be an instance of a subtype of the

program specification's nominal return type. So in the following corollary we combine the

soundness theorem with Lemma 3.6.5, which says that the possible results of a type-safe

NOAL expression must be instances of subtypes of the expression's nominal type. This

connection to the type system of NOAL is explored further in the next section.

Corollary 7.3.3. Let p be a program specification, with referenced specification SPEC,

precondition R and post :ondition Q and nominal result type S. Let < be the presumed

subtype relation of SPEC. Let NomSig be the nominal signature map of SPEC. Let

P = F; E be a NOAL program with nominal type S, where F is a system of mutually

recursive NOAL functions, and E is a NOAL expression.

Suppose that < is reflexive and transitive, < is safe with respect to NomSig, the

only type related to each visible type T by < is T itself, each function f i E F satisfies

its specification, and that for every SPEC-algebra C there is some SPEC-algebra A and

some simulation relation 1Z between C and A for NomSig and < such that IZ witnesses

<. If f- R {y +- E} Q, then P satisfies the specification p.

Proof: By the previous theorem, SPEC R {y -- E) Q. Since E has nominal type

S, by Lemma 3.6.5, each possible result of E has some type a < S. So by definition, P

satisfies the specification p. I

7.4 How a Type System can Aid Verification

In this section we discuss how type checking can be used to aid program verification.

7.4.1 Obedience in NOAL

For soundness of our Hoare-style verification technique for NOAL, we must ensure that

the possible results of each expression are instances of a subtype of the expression's

nominal type. We call this property obedience. Fundamentally, obedience is necessary

because our function specifications require that the arguments and results of a function

obey a subtype relation. Obedience also ensures that one's reasoning about assertions

165

using standard techniques such as the proof by contradiction is sound, as we showed in

Chapter 5. The soundness proof for our Hoare logic requires obedience to a subtype

relation for the same reason.

Instead of checking obedience with our Hoare logic, we separate type checking from

the rest of the verification problem. Separating type checking from our Hoare logic

allows the logic to be simpler than it would be otherwise. Furthermore, this separation

also allows us to use a computer to check mechanically whether our program is type-safe,

removing part of the burden of program verification from humans.

The NOAL type system can ensure obedience of type-safe expressions over a specifi-

cation SPEC if the following conditions are met.

e The specification's presumed subtype relation must be reflexive.

* The specification's presumed subtype relation must be transitive.

e The presumed subtype relation must be safe with respect to the specification's

nominal signature map.

These reasons for these conditions are explained in Section 3.6.

In addition, the above conditions are plausible and intuitive. Unless < is reflexive,

nominal environments will not be obedient, making our reasoning based on nominal

environments counterintuitive. Transitive relations are also more compactly described

than nontransitive ones, because one can just describe a basis for the relation and take

the transitive closure. Finally, unless < is safe, a "subtype" may not have all the instance

operations of its supertypes, and so its instances could not be used everywhere that

instances of the supertype could be used.

7.4.2 Verification in Trellis/Owl

It is easiest to use our Hoare-style verification techniques in a statically typed object-

oriented programming language, because a properly designed type system can do some

of the verification work automatically, as in NOAL. One such language is Trellis/Owl

[SCB*861, whose type system was the inspiration for the NOAL type system. Like

NOAL, Trellis/Owl type system is based on nominal signatures and a presumed subtype

relation.

166

Trellis/Owl limits presumed subtype relations to be partial orders, that is reflexive,

transitive, and antisymmetric relations on types. Although reflexive and transitive rela-

tions are necessary for type-checking and verification, antisymmetry is not. Trellis/Owl

requires that a presur,ed subtype relation be antisymmetric, because the implementa-

tion of each presumed subtype is also a subclass, and cyclic inheritance relationships are

nonsensical. However, symmetric subtype relationships are useful. For example, consider

types HashTable and BTree. We can specify these types so instances of these types obey

a common protocol for inserting and finding elements and so that each is a subtype of

the other, although they can have different class operations.

The Trellis/Owl type system supports program verification by ensuring obedience

to the presumed subtype relation. As in NOAL, it ensures this by requiring that the

presumed subtype relation is safe, reflexive and transitive. The presumed subtype rela-

tion of a Trellis/Owl program is declared, so that if the presumed subtype relation is a

subtype relation (in our sense), then our style of reasoning should be useful for program

verification in Trellis/Owl.

7.4.3 Verification in Emerald

Unlike Trellis/Owl the designers of Emerald [BHJL86] have made the mistake of inferring

subtype relationships for abstract types. Unfortunately, it is easy to specify types so that

the binary relation that Emerald infers is not a subtype relation in our sense. Therefore

to ensure that every environment obeys a subtype relation in an Emerald program, one

has to duplicate work that the type checker could have done.

7.4.4 Verification in Smalltalk-80

Many popular languages, such as Smalltalk-80 [GR83], are not statically type-checked but

are type-checked dynamically. In Smalltalk-80, type information is not checked during

assignments, but only on generic invocation. To support data abstraction, Smalltalk-80

ensures that each object is manipulated only by the instance operations defined by its

class (including those inherited from superclasses). Therefore, when an instance operation

named g is invoked on an object q, the class that implements q must define operation

g; if it does not, an error occurs and is reported to the user. Type information about

167

objects is also available to Smalltalk-80 programs during execution.

To use our Hoare-style reasoning techniques on a Smalltalk-80 program, we need a

notion of nominal type and some way to ensure obedience to a subtype relation.

To supply Smalltalk-80 programs with a notion of nominal type, one can annotate

one's programs with this information. The Smalltalk-80 programs in Goldberg and Rob-

son's book [GR83] already follow a convention of putting type information into variable

names to aid understanding.

There are two ways to force expressions to obey a subtype relation: dynamic or static

checking. Notice that we cannot rely on the dynamic type-checking of Smalltalk-80 to

ensure obedience, because Smalltalk-80 only checks that an instance operation invoked

on an object q is defined by q's class.

Dynamic checking could use the type information available at run-time in Smalltalk-

80 programs. One would place code in all operations to check that all the operation's

arguments have a type that is a subtype of their nominal type. (Smalltalk-80 itself checks

the first or "controlling" argument, so no checking on the first argument is needed.) We

say that a Smalltalk-80 program with such dynamic type checks is obedient if these

checks never detect an instance of some type other than a subtype. Of course, there is

no general algorithm for deciding when a Smalltalk-80 program is obedient.

Another way to ensure obedience would be to do static type-checking using the nom-

inal type information added to programs as annotations. It should be easy to adapt the

NOAL type system to Smalltalk-80, which would allow us to do some type checking by

hand, or to write a tool that used program annotations to do static type checking.

In reasoning about Smalltalk-S0 programs, it is important to define satisfaction of

specifications and subtype relations with respect to a set of obedient programs. Consider

what happens if we take as our set of observations the denotations of all Smalltalk-80

programs. In general, operations can be applied to expressions regardless of their "type."

As we noted, this ma" result in an "obedience" error. Consider the program

aPair third

(which is the equivalent of the NOAL expression third (aPair)). Suppose aPair denotes

an instance of IntPair. Then the result of the above program is an obedience error,

which could not happen in an environment where aPair denotes an IntTriple. So the

168

observation defined by this program would be able to distinguish triples from pairs. With

type annotations, we can decide what environments obey a subtype relation and we can

use obedient programs to describe observations. If aPair has nominal type IntPair, then

the above program would not be obedient. Therefore IntTriple would be a subtype

of IntPair with respect to the set of obedient programs but not with respect to all

Smalltalk-80 programs.

7.5 Observable Assertions and Reasoning

In this section we discuss the role that observable assertions play in our techniques for

specification and verification.

In Chapter 5 we showed that we can reason about environments that obey a subtype

relation using observable assertions and standard rules from logic. Furthermore, we

showed that if Q is an observable assertion, then an environment that obeys a subtype

relation models Q if and only if there is no way to observe that Q does not hold. So

the assumptions that assertions are observable and that environments obey a subtype

relation are sufficient to ensure that our method of evaluating assertions is sensible.

The soundness of our Hoare logic does not require that every assertion used in a

proof be observable. Instead we only require that the preconditions of function and

operation specifications and the assertions appearing in the rules [conseq] and [carry] are

observable. This requirement is restrictive, but it is needed for the proof of the soundness

of our Hoare logic given above.

However, as a practical matter one can hardly use assertions that are not observable

in proofs, since the rules [conseq] and [carry] are used with great regularity.

We do not know whether the observability restrictions of our Hoare logic are also

necess;ry for the soundness of our verification technique. The difficulty can be illustrated

by the non-observable MP-assertion "v = x," where v and x have nominal type Mob.

Consider an environment r7 defined on these identifiers in which

77(v) = M[ins(ins(new(PSchd,true), 1) ,2)](C, 0) (7.60)

77(x) = M[ins(ins (new(PSchd,false), 1), 2)J(C, 0). (7.61)

Since the two instances of PSchd have the same set of waiting integers, we have (C, 77)

169

v = x, even though the two instances of PSchd are not equal. However, the imitates
relation with respect to type-safe NOAL programs is so strong that we cannot see how
using the assertion "v = x" as a precondition of a function specification would allow us
to draw invalid conclusions from our Hoare logic.

So it is an open problem whether the observability requirements of our Hoare logic
are necessary for soundness.

170

Chapter 8

Discussion

In this chapter we discuss how the results of the previous chapters may be applied to

other iprogramming languages, what extersions to our algebraic mrodels are needed for

practical applications, and future work.

8.1 Simulation in Other Programming Languages

Various languages differ in their ability to express certain observations on abstract types.

This is because a program must do its work using the operations of the given types. For

example, consider an object-oriented programming language that has neither an angelic

choice operator nor parallelism. The result of an angelic choice between two generic

invocations cannot be expressed in such a language, because there is no way to run the

two generic invocations "in parallel" and choose a result of one that halts. Because

NOAL includes angelic choice, it is capable of expressing such observations.

In Chapter 6 we showed that simulation relations that relate every object of a sub-

type to every object of a supertype determine a subtype relation (with respect to the

set of all type-safe NOAL programs). Ther-fore, if one's programming language is less

powerful than NOAL in the sense that each observation described by that language is

also an observation described by a type-safe NOAL program, then simulation relations

also determine subtype relations for that language. Similarly, for such a weaker language,

simulation relations should be useful for Hoare-style verification as in Chapter 7.

On the other hand, if a language lacks the constructs of NOAL and built-in types like

the streams of our specification language, there may be a weaker definition of simulation

relations for such a language that could serve as a basis for Hoare-style verification.

171

172

8.2 Extensions Needed for Practical Applications

Two extensions of our results are needed if they are to be directly used in "real" languages

such as Smalltalk-80 or Trellis/Owl. These extensions would eliminate limitations of our

algebraic models of type specifications.

The most important extension would be to model mutable types and extend our

definition of subtype relations and our verification techniques to handle mutation. Our

algebraic models are only suited for modeling immutable types; that is, types with no

time-varying state. By contrast, most object-oriented programs use mutable types.

We also did not consider parameterized abstract types. This is not a severe limita-

tion, however, since we can describe subtype relations and reasoning for instantiations of

parameteiized types. Still, it would be interesting to describe the subtype relationships

among parameterized types more directly and to use such relationships to derive subtype

relationships on their instantiations .

8.3 Future Work

In this section we focus on future work in the areas of specification, verification, and

language design. Before turning to these areas we briefly state some open problems.

The following is a list of various technical problems that this dissertation has left

open.

" What is the relationship between the proof theory of a subtype and the proof theory

of its supertypes? That is, how can one characterize subtype relations using the set

of valid assertions that can be made about the objects of various abstract types?

Our definition of subtype relations is model-theoretic.

" What conditions on specifications and observations guarantee that there is a largest

subtype relation?

" Does every subtype relation with respect to the set of type-safe NOAL programs de-

termines simulation relations that witness that relation? That is, does the converse

of Theorem 6.3.2 hold? This appears to be a hard problem [Nip87].

1 A related question is what kind of parameterization is necessary or useful in a language with inclusion

polymorphism.

173

9 Are the observability conditions of our Hoare logic necessary for the soundness of

program verification?

8.3.1 Future Work on Specification

During design and maintenance, one sometimes adds a new abstract type to one's pro-

gram. If one already knows a subtype relation on the old types, the following questions

arise.

* What conditions on the specification of the new type will ensure that the old

subtype relation is still a subtype relation on the new specification?

* What has to be shown to add new subtype relationships involving the new type to

the old subtype relation?

Answers to these questions would allow more modular proofs of subtype relations.

Another question is whether one can factor proofs of subtype relationships by taking

advantage of controlled inheritance of specifications. For example, if the specification

of a type S incorporates the specification of a type T, then it should be possible to

take advantage of this relationship when proving that S is a subtype of T. However,

such techniques will probably depend on a proof-theoretic characterization of subtype

relations.

Finally, there is work to be done in overcoming the limitations of our specification

language. These limitations are discussed in Chapter 4.

8.3.2 Future Work on Verification

An important extension to our techniques for verification would be to support the ver-

ification of modules that implement abstract types (classes). There are two aspects to

this problem. The first involves showing that a class meets the specification of the type

it purports to implement in the presence of inclusion polymorphism. This should be

straightforward, given our results on program verification, but there may be some sub-

tleties that we do not yet understand. The second aspect is how to factor the proof of

correctness for a subclass to take advantage of the proof of correctness of its superclasses.

174

To make our results directly applicable to existing languages, our techniques for ver-

ification need to be extended to cover imperative languages. However, it should not be

difficult to adapt our Hoare-style proof system to handle imperative languages where

aliasing of mutable objects is prohibited.

8.3.3 Future Work on Language Design

In this subsection we discuss some directions for future work in language design.

One long-range project would be to design an object-oriented programming language

that would support inclusion polymorphism, subtyping, inheritance, and program ver-

ification. Such a language should have a type system that can ensure obedience to a

subtype relation. However, it is too early to tell what other features a language would

need to support program verification. For example, we do not know what features of an

inheritance mechanism help or hinder verification.

A more modest language design project would be to solve the name-clash (or interface

control) problem for languages with generic invocation mechanisms [LL85]. In a language

with generic invocation, each object's instance operations form a behavioral interface that

is analogous to the behavioral interface of an abstract type. However, in all languages

with generic invocation mechanisms that we know, there is no way to change an object's

interface. Therefore each object presents the same interface to all parts of a program

(except for the class that implements the object's behavior). It can be difficult and costly

to combine independently designed program parts that assume that the same instance

operation means different things. Furthermore, subtyping depends on object interfaces.

For example, a type Int3 that behaves like IntTriple, but has instance operations

named fst and snd, will not be a subtype of IntPair even though instances of type

Int3 otherwise behave like instances of IntPair. A mechanism to mediate between

independently designed abstractions with fixed interfaces is a feature of several languages

without generic invocation mechanisms (e.g., Argus [LDH*87] and Ada [Ada83]), where

one can change the interface of a type parameter. In a language with a generic invocation

mechanism, one wants to be able to change the interfaces of objects. The ability to change

object interfaces could also be exploited to provide access control for objects [JL76] [JL78].

Chapter 9

Summary and Conclusions

In this chapter we offer a high-level summary of our results and their significance as well

as some conclusions about programming and programming language design.

9.1 Summary of Results

The two main results in this dissertation are a new definition of subtype relations and

new techniques for the specification and verification of object-oriented programs that

exploit inclusion polymorphism.

We have given a precise definition of subtype relations. This definition embodies the

intuition that each instance of a subtype imitates some instance of that type's supertypes.

So programs can manipulate instances of a subtype as if they were instances of that type's

supertypes without surprising results.

The most important property of our definition of subtype relations is that it allows ab-

stract types to be compared, based on their specifications. Most other work on subtyping

only describes subtype relationships for a fixed set of built-in types (e.g., [Car84]). Our

definition also allows incompletely specified and nondeterministic types to be compared,

so it is more widely applicable than Bruce and Wegner's definition [BW87].

We allow nondeterminism in algebraic models and in observations because many

interesting abstract types are nondeterministic and because nondeterminism allows one

more freedom to leave implementation decisions open.

To deal with incomplete specifications we have taken a loose view of the semantics

of a specification; that is, the semantics of a specification is a set of algebraic models

instead of a single model such as the initial or final model. A loose view of specifications

enables the definition of subtype relations to be applied even to specifications for which

175

176

no single model captures all the desired behaviors.

We have described a way to evaluate assertions that are tailored to nominal types in

programs that exploit inclusion polymorphism. This method uses the imitates relation

and nominal environments. It allows us to write specifications for functions and programs

that exploit inclusion polymorphism. We have shown that this method is sensible for

reasoning about environments that obey a subtype relation.

Finally, we have presented a logic for Iloare-style verification of NOAL programs.

This logic is novel in that it allows one to translate assertions tailored to a subtype into

assertions that are tailored to a supertype. Symbolic verification of NOAL programs is

done as follows. One must first find simulation relations that witness the presumed sub-

type relation of the abstract type specification referenced by one's program specification.

These simulation relations are then used to derive axioms for translating assertions. One

then uses the proof rules to prove that the purported implementatio , meets the specifi-

cation, in the usual way. If these conditions (and a few minor technical ones) are met,

then the purported implementation satisfies the program specification. This is, as far

as we know, the first systematic technique for the verification of programs that exploit

inclusion polymorphism.

9.2 Conclusions for Programmers

In this section we describe the significance of our results and some lessons for program-

mers who work with object-oriented programming languages that have generic invocation

mechanisms.

Our work gives programmers a new tool: subtype relations. Subtype relationships are

similar to satisfaction relationships among abstract types; the difference is largely that the

syntax of class operations does not matter for a subtype relationship. Subtype relations

are useful during program design, where they can help track the evolution of abstractions,

limit the effects of specification changes, and group and classify related types [Lis88]. In a

system !ike Smalltalk-80 where classes are also objects, subtype relationships among the

types of classes can also be used in similar ways. We have shown how subtype relations

can be used to write polymorphic specifications and to support careful reasoning.

Perhaps the most important lesson for programmers is the most basic one: subtype

177

relationships are based on observable behavior and they have nothing to do with how

a type is implemented [Sny86a]. That is, a subtype is not a subclass. While it is

usefu' to record inheritance relationships among implementations in a subclass relation,

one should organize abstract types by a subtype relation. This distinction between

subclasses and subtypes, when properly understood, can be a powerful tool for separation

of concerns. Subtype relations allow one to reason abstractly about instances of abstract

types. Subclass relations allow one to reason about how instances are implemented.

The distinction between subtypes and subclasses is not just academic. If one passes

an argument whose type is not a subtype of the expected formal argument type to a

procedure, one has no guarantee that the procedure will act as desired. If one uses an

instance of a subclass where instances of a superclass are expected, then one's programs

may behave in unexpected ways. To prevent such problems one should ensure that

each expression denotes an object whose type is a subtype of the expression's nominal

type. If one programs in a statically type-checked language like Trellis/Owl, then the

type system can check this second property automatically, once it has been told about a

subtype relation.

An understanding of subtype relations also gives programmers a strategy for testing

modules that exploit inclusion polymorphism. That is, one should concentrate on tests

where the argument types are the same as the nominal types of the module's formal

arguments. If there are problems in the module that can be uncovered by testing, this

strategy can uncover them.

9.3 Conclusions for Language Designers

In this section we discuss some lessons for designers of new programming languages with

generic invocation mechanisms.

9.3.1 Languages Should Have Declared Subtype Relations

If one is designing a type system for an object-oriented prcgramming language with a

generic invocation mechanism, then subtype relations should be a part of that type sys-

t,-... (therwise programs will not be able to exploit inclusion polymorphism.) Perhaps

the most import ant lesson that (merges from our work for language designers is to make

17S

the programmer declare the subtype relation for abstract types.

The reason this lesson is so important is that the programming language cannot, in

general, find a nontrivial subtype relation on the types of a program. Most programming

languages are not designed to include behavioral specifications as part of programs. Each

module is a specification of that module's behavior, but it is not the specification that

the programmer worked from during design (and verification). Even if the program text

included a behavioral specification, the problem of finding a nontrivial subtype relation

on the types of a specification is undecidable in general. It seems more straightforward to

let the programmer declare a subtype relation. Finally, a programmer may wish to work

in a subset of a full language, and thus may only be concerned with subtype relations

with respect to that subset of programs.

On the other hand, some mild restrictions on what subtype relations can be declared

are probably unavoidable if one wants to use a static type system to ensure that every

environment obeys the declared subtype relation. For example, to ensure obedience

to a subtype relation both the NOAL and Trellis/Owl type systems require that the

declared subtype relation be reflexive and transitive and that each instance operation

of a supertype is also an instance operation of each of that type's subtypes (with an

appropriate signature).

9.3.2 TypeOf Operators Cause Problems for Reasoning

Another lesson for language designers is that operators that tell the type of an object

cause problems for reasoning and should thus be avoided. This is a new twist on an

old lesson: if one wants to reason about abstract types based on their specifications,

then one's language should only allow objects to be observed by invoking their instance

operations.

A typeOf operator returns the type of an object as a string. For example, the program

typeof (x) will give different results in environments where x denotes objects of different

types. Such an operator destroys subtyping. It is easy to show that a subtype relation

with respect to the set of all programs that use typeOf cannot relate different types.

So we cannot directly use our methods to reason about an implementation that uses a

typeOf operator.

Appendix A

Summary of Notation

In this appendix we summarize the notation used in earlier chapters. We also give the

signatures of the questions posed in earlier chapters, where these questions usually take

the form of definitions.

Table A.1 lists some primitive domains, which are just sets. Algebras are heteroge-

neous (i.e., sorted), so one should think of Object as the disjoint union of several sets

(one for each sort). In this appendix the carrier sets of various sorts are not distinguished

for the sake of simplicity.

As in Table A.1, phrases are often abbreviated. For example, "GenOpSym" should

be read as "generic operation symbol."

The syntax of the terms in our specification language is given in Figure 2.4 on page 31.

The syntax of NOAL expressions is given in Figure 3.1 on page 46.

The following tables are organized by topic, which is roughly by chapter, except that

the syntax and semantics of specifications and programs are treated separately. For each

Table A.I: Primitive Domains
Notation for Members Name description

o, q, r E Object instances

S, T E Type type symbols
S, T E Sort sort symbols

gg-.T E OpSymbol operation symbols (of algebras)
x, y, z E Identifier identifiers

f E FunIdent function identifiers
g E GenOpSym generic operation symbols
f E TrtFunSym trait function symbols

true, false E Bool the booleans
P, Q, R, E Term logical formulas

E E Expr programming language expressions

179

ISO

Table A.2: Algebras and Related Concepts
o, q, r E CarrierSet = Object
o, q, r E TypeCarrier = Object
o, q, 7- E PossRes = TypeCarrier
Q, R E SetOfPossRes = {PossRes}

AflT E Operation = TypeCarrier* -- SetOfPossRes

Af E TraitFun = Object* --+ Object
Aops E SetOfOperation = {Operation}

ATFUNS E SetOfTrtFun = {TraitFun}

A, B,C E Algebra =(CarrierSet, TypeCarrier,
SetOfTrtFun, SetOfOperation

SPEC E SpecSemantics = {Algebra}

Table A.3: Questions for Algebras
has type? : Object, Algebra, Type --+ Bool

topic there are one or two tables. One table is organized like Table A.1 and describes

the domains related to that topic. The second table lists the significant questions (i.e.,

definitions) related to that topic.

The following conventions are used to describe domains. Each entry has the form

d E D = E' meaning that d is the typical notation for an element of the domain D,

which is defined by E'. For example

q E Env = TypedIdent --+ Object

means that 77 is used to denote environments, which are mappings from typed identifiers

to objects. The following notations are used in describing domains. The notation {D}

means a nonempty set of elements from the domain named D. The notation D* stands

for all finite tuples of zero or more Ds. The notation D1 -+ D2 denotes the set of functions

from a subset of D1 to D2. The notation (D 1 , D 2) stands for the set of all pairs whose

first element is from D, and whose second element is from D 2.

Table A.2 describes algebras and some related operations from Chapter 2,

Table A.3 describes questions for algebras.

Table A.4 describes the concepts used to describe the syntax and semantics of the

type specification language of Chapter 2. Also included are concepts used to describe

the syntax of algebras. The structure of Larch traits is not further described. The ab-

181

Table A.4: Type Specifications and Related Concepts
SORTS E SetOfSorts = {Sort}
TYPES E SetOfTypes = {Type}

V E VisibleTypes = {Type}
TFUNS E SetOfTrtFunSym = {TrtFunSym}

OPS E SetOfOpSym = {OpSymbol}
SE Signature =(SetOfSorts, SetOfTypes, VisibleTypes,)

t (SetOfTrtFunSym, SetOfOpSym
T E Trait =

P, Q, R E Assertion = Term
P, R E Requires = Assertion

Q E Effect = Assertion
g E OpSpec = (GenOpSym,NomSig,Requires,Effect)
T E OperationsSpec = {OpSpec}
< E BinRelTyp = Type, Type - Bool

SPEC E TypeSpec = (SetOfTypes, BinRelTyp, Trait, OperationsSpec)
A E FunStruct = (CarrierSet, SetOfAbsFun)

A(E) E ReductOf = Algebra, Signature --* Algebra
SIG E SigOfSpec = TypeSpec --+ Signature
SIG E SigOfAlg = Algebra --+ Signature

E ExtendedEnv = Term -+ Object

Table A.5: Questions for Type Specifications
satisfies? Operation, OpSpec -- Bool
satisfies? Algebra, TypeSpec -- Bool

breviation "FunStruct" stands for the "functional structure" of an algebra. The domain

"BinRelTyp" should be read as "binary relations on types" or "presumed subtype rela-

tions." The notation A(E,), where E is a signature, means the E-reduct of the algebra A.

The notation V denotes the extension of the environment 77 to a mapping from terms to

the elements of the carrier set of the algebra in the range of 77 (see Chapter 2).

Table A.5 describes the definitions satisfaction from in Chapter 2.

Table A.6 describes the concepts used to define observations in Chapter 3.

Table A.6: Observations and Related Concepts
x: T E TypedIdent = (Identifier, Type)

,q E Env = Typedldent -- Object
P E Observation = Algebra, Env -- SetOfPossRes

OBS E SetOfObs = {Observation}

182

Table A.7: Programming Language Concepts
X, Y, Z E SetOfIdent = {Typedldent)

M E Denotation = Expr -+ Observation
Generic E GIMap = GenOpSym, TypeCarrier*, Algebra - OpSymbol

GOP E SetOfGenOp = {GenOpSym}
S T E NomSig = (Type*, Type)

{S--- TI E SetOfNomSig = {NomSig}
NomSig E NomSigMap = GenOpSym -* SetOfNomSig

H, X E TypeAssumptions = {Typedldent}
E E DomainOrder = Object, Object -- Bool

EE E DomOrdForSets = SetOfPossRes, SetOfPossRes --+ Bool
E ClosurcOf = SetOfPossRes --, SetOfPossRes

Table A.8: Questions for Programming Language
has nominal type? : Expr, NomSigMap, BinRelTyp, Type --+ Bool
safe? : BinRelTyp, NomSigMap -- Bool
obeys? : Algebra, Env, BinRelTyp - Bool
monotonic? : Operation - Bool
strongly monotonic? : Operation - Bool
continuous? : Operation - Bool

Table A.7 describes the concepts used in Chapter 3 and Appendix C to give semantics

to NOAL programs and to describe the NOAL type system. The operator that takes the

closure of a set is written as an overbar; that is, the closure of a set Q is written Q.

Table A.8 describes the major definitions of Chapter 3 and Appendix C.

Table A.9 describes the concepts for function specifications from Chapter 4, and

table A.10 describes the major definitions.

Table A.1 1 describes subtype relations from Chapter 5.

Table A.12 describes typed families of relations, abbreviated "FamilyOfRel," from

Chapter 6. Table A.13 describes the definition of simulation relations from Chapter 6.

Table A.14 describes the concept of a Ioare-triple from Chapter 7 and table A.15

describes related definitions.

Table A.9: Function Specification Concepts
f E FunSpec = (Funident, NomSig,TypeSpec,Requires,Effect)

cQ E CharObserv = Observation

183

Table A.10: Questions for Function Specifications
nominal? Algebra, Env -- Bool
imitates? Algebra, Env, Algebra, Env, SetOfObs -+ Bool
models? Algebra, Env, Assertion -- Bool
proper? Env -- Bool
satisfies? FunSpec, Operation --* Bool
observable? Assertion, SetOfObs -- Bool

Table A.11: Subtype Relations
subtype relation? SpecSemantics, BinRelTyp, SetOfObs --+ Bool

Table A.12: Typed Families Of Relations
1? E FamilyOfRel { TypeCarrier, TypeCarrier -- Bool }

Table A.13: Questions for Simulation
bistrict? Algebra, Algebra, FamilyOfRel - Bool
V-identical? Algebra, Algebra, FamilyOfRel Bool
homomorphic rel? Algebra, Algebra, FamilyOfRel, NomSigMap, BinRelTyp -- Bool
simulation rel? Algebra, Algebra, FamilyOfRel, NomSigMap, BinRelTyp - Bool
universal model? Algebra, SpecSemantics, SetOfObs -- Bool

Table A.14: Verification Concepts
P E PreCond = Assertion
Q E PostCond = Assertion

P {y +- E} Q E HoareTriple = (PreCond,Identifier,Expression,PostCond)

Table A.15: Questions for Verification
models? Algebra, Env, HoareTriple -+ Bool
valid? SpecSemantics, BinRelTyp, HoareTriple -- Bool

184

Appendix B

Visible Types and Streams

In this appendix we describe the models of the visible types fixed by our type specification

language. These types are Bool, Int and two corresponding stream types: BoolStream

and IntStream.

The algebra for the type Bool is found in Figure 2.1 on page 26.

Our algebra for the type Int is found in Figure B.1.

The types IntStream and BoolStream are used to model output. The cons operation

of each type is lazy; that is, cons is not strict in its second argument. In Figure B.2 on

page 188 we give an algebraic model of IntStream. The model of BoolStream is similar

and can be obtained by replacing Bool for Int throughout.

The carrier set of IntStream is defined using the operator Stream (Bro86], defined as

Stream(I) V {I" U (I* x {I}) U I', (B.1)

where

" I denotes the set of finite streams, which are finite sequences of elements of I,

such as the empty stream () and (i 1,i 2, i3),

* 1P x {I} denotes the set of partial streams, which are finite sequences ending in _L,

such as (i 1, i2 , i3 , _L) and the totally undefined stream _L = (1), and

* I' denotes the set of infinite streams, such as (il, i2 , i3,. ...

The definition of the restIntstrea..intstreaz operation also needs some explanation.

The rest operation is strict, as Figure B.2 shows, since all trait functions are strict. Fur-

thermore, one should think of the rest operation as requiring that its argument stream

185

186

Figure B.1: Model of the visible type Int.

Carrier sets

B~ntClas L' I~ {,Int }

Trait Functions

Boo de0

B#+#(i,j) 4-' i+ j

del -

B#..q# del true if i=j
B~.e~(ij) '1false otherwise

j)def (true if i< j
B~<(i~) - false otherwise

B#>#(i,j) !=-- #<(,i

B#># (i, j) =e- B#:5#(j, i)

Operations

del
Baddnttkjt (i, j) f {B:O+#(i,j) I

BnegInt - In Ie B-#(i)}

187

not be empty, since the set of possible results of invoking rest on an empty stream is the

entire carrier set of IntStream. Finally, note that the consztstreanItIntstream opera-

tion is not strict in its stream argument, as this is how partial streams are constructed.

Figure B.2: Model of the visible type IntStream.

Carrier sets

B~nt~lass 4f I{I, In tStrea m

Trait Functions

BiDLstrC,.() IntStream

B,..,pty() o~

B..~(s, i) d~(i) i, ... 0 f

Bfi(i(s) 1 ,.. iff = =

(Q if s =
Bret(s) jif s = (i,J.-L)

(i ..) if s = i j. .
~gftrue its =()

BisEmpty?(S) - false if s = (j..

Operations

BIntStreaInt~a() - IntStream}

Be~Yn~ra~ls-nsra (nt St ream) d If
Bundf IedIteaCsIt~tr (In tStream) -L }

def I {Bjit(s)} if s#0
B'fir'tIntStrea..Int (S) {L,0, 1 -1... if s=0

clef J Bret(s)} if s () 0, s 6 (i -L~)
BreItftr-ItStj(s) - {I} if s (i, -L)1Bintstreau if 3 0

BcOnststrIt-intstea (- ±) clf{ (i, L)}

BisEmpty?Intstreauflooi (S) f~ Bi.Empty?(S) I

Appendix C

Recursively-Defined NOAL Functions

In this appendix we describe the semantics of systems of recursively-defined functions in

NOAL and we prove the substitution property for NOAL functions.

C.1 Semantics of NOAL Functions

The semantics of NOAL functions are discussed informally in Chapter 3. In this section

we give a formal semantics for systems of mutually recursive NOAL functions. Our

semantics follows Broy's discussion of the semantics of AMPL [Bro86, Page 20]. We also

describe how the carrier sets of an algebra are viewed as domains and an assumption

about the domain ordering on the carrier sets of algebras that can be observed by NOAL

programs.

Throughout this section we fix a signature E = (SORTS, TYPES, V, TFUNS, OPS)

and a E-algebra .1.

C.1.1 Domains and Domain Orderings

Recall that 1, which represents nontermination and errors, is an element of the carrier set

of each type in an algebra. To define the semantics of NOAL (in particular the semantics

of recursive function definitions), we use a partial order E on each type's carrier set that

makes that carrier set a domain, that is a pointed complete partial order.

The following definition of a pointed complete partial order is taken from [Sch86,

Page 111]. For a partially ordered set D, a subset Q of D is a chain if it is nonempty

and for all qj, q2 E Q, either q, 1 q2 or q2 E qj. A complete partial order is a set D

with a partial order E, such that every chain in D has a least upper bound in D. The

least upper bound of a chain Q C D, written lub(Q), is the smallest element of D that

189

190

is at least as large as every element of Q. A pointed complete partial order is a complete

partial order that has a least element, I .

From now on we will simply refer to pointed complete partial orders as domains. We

are primarily interested in flat domains, since the semantics for recursive functions that

we use assumes that each carrier set, except for the carrier sets of the stream types, is a

flat domain [BroS6, Page 7].

Definition C.1.1 (flat domain). A domain is flat if and only if for all elements q and

r, q 1 r if and only if q = r or q = I.

As usual, we write q E r if q E r and q 4 r. Therefore, in a flat domain, q C r if and

only if q = I.

Our assumptions about the partial orde- C on a carrier set are as follows. Let E be a

signature and let A be a E-algebra. Recall that the semantics of the visible types is fixed

by convention; that is, the same reduct is used in all algebras for the visible types. We

assume that Bool is a visible type with proper elements true and false; these are needed

to define if expressions. We assume that for each visible type v, the carrier set of v

comes equipped with a partial order C (defined by convention) that makes A, a domain

with I as its least element. We further assume that the carrier set of each visible type

except BoolStream and IntStream is a flat domain. For a non-visible type T, we define

C so that the carrier set of T is a flat domain.

For example, our convention for C on the carrier sets of the visible types of the

algebraic models of our specification language is as follows. The carrier sets of Bool and

Int are flat domains. The carrier sets of BoolStream and IntStream are such that if A

is an algebra and q, r E ABoolStream, then q g r if and only if either q = r or q is a partial

stream whose proper elements are a prefix of r [Bro86, Section 2.1].

We also regard the carrier set of A itself as a domain formed by the union of all its

carrier sets. That is, q 1 r in A if and only if q and r are in the same carrier set and

q E r. (Recall that I is in each type's carrier set.)

For the domain ordering on an algebra to be useful, it must say something about the

operations of the algebra. In particular, the operations of the algebra must he monotonic

and continuous. To define these terms, we fil. extend the partial order C to tuples as

follows: q C r if and only if for all i, q g ri. Since operations return a set of possible

191

results, we also define an ordering ;E on sets of possible results. We write Q CW R if

for each q E Q there is some r E R such that q C r [Bro86, Page 13].

Definition C.1.2 (monotonic). An operation g is monotonic if and only if for all q,
q2, if -j E , then g(q-) q g(-).

That is, g is monotonic if whenever q C ' and ri e g(il), then there is some r2 E g()

such that r, E r2.

To define continuous operations, we view chains as sequences. A sequence in C is

a nonempty set Q = {qj I i E I} indexed by some well-ordered set I (whose elements

are ordered by <) with the property that, if i < j, then qj g qj. A well-ordered set

is a totally-ordered set such that every non-empty subset has a least element [Gra79,

Pagel2]. The elements of a sequence form a chain and conversely the elements of a chain

can be placed in a sequence. We use one concept or the other as is convenient.

Definition C.1.3 (continuous). A monotonic operation g is continuous if and only if

for every sequence in C, Q = {qj}, whenever R = {rj} is a sequence in E indexed by the

same set as Q such that for all indexes i, ri E g(q), then lub(R) E g(lub(Q)).

Because we require the operations of an algebra to be continuous, our assumption

that the carrier sets of all types except IntStream and BoolStream are flat domains is

restrictive. That is, there are some abstract types whose carrier sets cannot be consid

flat domains if their operations are to be monotonic and continuous. For example, the

carrier set of IntStream cannot be a flat domain, since then the cons operation would

not be monotonic.

So that we may assign denotations to systems of mutually recursive function defini-

tions, we also assume that each set of possible results of an algebra's operations is closed

with respect to the algebra's domain ordering E. A set of values is closed if and only if for

every chain Q c D, its least upper bound, lub(Q), is also in D. This assumption ensures

that the set of possible results of each NOAL expression is closed and thus accords with

the principle of finite observability [Bro86].

C.1.2 Semantics of Recursive Functions in NOAL

In this subsection we give the semantics of systems of mutually recursive NOAL functions.

192

We begin by defining the semantics of systems that do not use angelic choice. Fol-

lowing Broy we obtain approximations by eliminating erratic choice operators (E) and

textually expanding recursive calls. Erratic choices are turned into different expansions.

The notation F(A)[f] stands for the denotation of a function definition named f

in an algebra A. The denotation of a system of function definitions does not depend

on the surrounding environment, because in the body of a recursively defined NOAL

function, there can be no free identifiers or function identifiers, besides those of the other

recursively defined functions and the function's formal arguments.

Fix an algebra A. Let

fun fi(X :S) :T =Ej;

fun fm(4, : S",,) :Tm = Em

be a mutually recursive system of NOAL function definitions, where the angelic choice

operator (V) does not occur in the Ej.

When eliminating erratic choice operators one makes choices of what expressions to

execute; each such choice is called a deterministic descendant. An expression E" is a

deterministic descendant of an expression E' if E" does not contain the erratic choice

operator (0) and can be obtained from E' by replacing subexpressions of the form "Yi ElY2

with either 7y or 1Y2.

A family D(j,i) of expressions is called a choice family for the system of fj if for each

j, D0,0) is a deterministic descendant of Ej, and D(j,i+0 is a deterministic descendant of

D(j,j) with (fun(xk : S)Ek) substituted for fk for each k. The expression D(j,i+1) differs

from D(,,3) in that one more recursion is unrolled, thus D(j,i+l) is a better approximation

to one computation of fj than D(j,).

For example, consider a system with one recursively defined function, where fI is the

function choose defined by

fun choose (x:Int): Int = (x El choose(add(x,l))).

There are infinitely many choice families for this example. One choice family for choose

is for all i, D(j,j) = x. Another choice family has D(,I) = D(i,) for all i > 1, where

D(1 ,o) = choose(add(x,l))

D(j,) = (fun (x:Int) x) (add(x,1)).

193

There is also a choice family that has an occurrence of choose in every D(j,).

As usual, an everywhere-I function is the first approximation to recursive invocations

in the D(j,i). For each j, let Gj be the function abstract of the form

fun(x : S) Tj = bottom[Tj].

To define the meaning of each recursively defined NOAL function, we take the least

upper bounds of sequences of approximate results. Given a choice family, D(j,,), for

each j let Q1 (q = (li) be a sequence in C, where for each i, 4i is a possible result

of M[D(j,)[d/f](A, rl) and q(x-) = q. As Broy notes, there are such sequences in E

because the deterministic language constructs (and each operation of A) are monotonic

and because D(j,i+l) is derived from D(j,) by unrolling another recursion. Note that

D(j,i)[G/f] is recursion-free. For each j, let DDj(q) denote the set of all sequences Q(q-)

for all choice families.

For the choose example, DDI(O) would be the set consisting of the sequence

(_, ., _,...) and all sequences in E of the form

(_l, L, .. __,n, n, n,.. ..

n

for some n > 0.

The denotation F(A)[f3] is defined by

.T'(a)[f,](q def {lub(Qj(q)) I Qj(q) E DDj(q)}. (C.1)

That is, F(A)-[f3 (-) is the closure of the set of all the least upper bounds of all sequences

in E from DD1 (q. The closure of a set Q, written Q, is the smallest closed set that

contains Q. Taking the closure ensures that the set of possible results is closed; it might

otherwise be possible to form a sequence from the hub(Q 2 (q)) whose least upper bound

was not in the set.

For the choose example we determine the possible results of choose(0) as follows.

The least upper bound of the sequence (1, 1, 1,...) is I. The least upper bound of a

sequences of the form (._, __, _I,... , n, n, n .. .) is n. So we have

{lub(Qj(0)) I Qi(0) E DD(O)} = {_1L,0, 1,2,3,...1.

194

This set is already closed in the E ordering (as the carrier set of Int is a flat domain) so

it is the set of possible results.

The meaning of a system of recursive function definitions that uses angelic choice uses

the meaning of a system that does not use angelic choice as a first approximation. Better

approximations are obtained by using earlier approximations to evaluate recursive calls.

The net effect is that each approximation uses angelic choice for deeper recursions than

the previous approximation [Bro86, Page 19].

Let
fun f l (i, : S1):TW = E;

fun fm(i7, : s):T = Em

be a system of mutually recursive NOAL function definitions. Let E(jo) be derived from

Ej by replacing all occurrences of the angelic choice operator (V) with the erratic choice

operator (). Let

fun g(1,O)(X- : S1) =

fun g(mO)(Xn: S",) :T = E(m,O)

For example, consider the function

fun choose2 (x:Int): Int - (x V choose2(add(x,l))).

For this example, the system with V replaced by U is

fun g(i,o) (x:Int): Int = (x f choose2(add(x,l))).

For each j, .F(A)[g(j,o)l gives meaning to recursive calls to fj. We call the next

approximation obtained in this way Yc(A)[g(jl)]j. In this way a family .F(A)[g(,,,)] for

each j and i is defined as follows. For each natural number i,

F (A))[g(j,i+,)] (q M~ .[Ej] (A, 71), (C.2)

where

X) = (C.3)

and where for all k,

(7 = .F(A)[g(k,)1. (C.4)

195

That is, to find the possible results of F(A) g(i,i +I)(q), take the possible results of Ej,

which may use angelic choice, in an environment where qis bound to the formals of fj and

.F(A) [&,)II is used as an approximation to fk, for all k. (The only free identifiers in Ej

are the xj, and the only free function identifiers are the fk.) By construction, .F(A)[- j,,)]

does i levels of recursion using angelic choice and then reverts to erratic choice.

For the choose2 example,

.F(A)[g(,o)](0) = {_1_,0,1,2,3, ... } (C.5)

F(A)[g(l,l)j(0) =ef Mix V choose2(add(x, 1))](A,77) (C.6)

= {0} ({.., 1,2,3,.. .} \ {__}) (C.7)

= {0, 1,2,3,...}. (C.8)

where 77(x) = 0 and r7(choose2) = F(A)[g(l,o)]. By the definition of angelic choice, I is

not a possible result of the expression x V choose2(add(x, 1)) in 77, because the only

possible result of x is 0. The possible results of $F(A)jg(jj)j(O) for all i > 1 are also

{0, 1,2,3,...}.

Following [Bro86, Page 191, for each j,

'(A)[fj](q- d4eal n.'(A)jg(j,o](q-'). (C.9)

For the choose2 example:

S:(A)jchoose21(0) 4e, n.F(A)[g(l,,,)(0) (C. 10)
i

-- {0,1,2,3,...}. (C.11)

C.2 The Substitution Property for NOAL Functions

In this section we prove the substitution property for NOAL functions; that is we give

the postponed proof of Lemma 6.2.2.

Because the semantics of systems of mutually recursive function definitions involve

closures and least upper bounds of sequences, it is convenient to first show that simulation

relations are strongly monotonic and continuous.

Definition C.2.1 (strongly monotonic). A binary relation < between domains D1

and D 2 is strongly monotonic if and only if for all ql,q2 E D, and for all rl,r 2 E D2,

whenever q, E q2, q, < ri, and q2 < r 2, then ri C- r2.

196

Figure C.A: Strong monotonicity of <.

q2 < r 2 q2 < r 2

U UU
ql < r, q, < r

This definition is illustrated in Figure C.1. A typed family of relations 1? is strongly

monotonic if each RZT is a strongly monotonic relation.

The following lemma says that each simulation relation is strongly monotonic.

Lemma C.2.2. Let E be a signature. Let C and A be F-algebras such that each carrier

set of a non-visible type is flat.

If 1? is a simulation relation between C and A, then 1? is strongly monotonic.

Proof: Let T be a type. Suppose q, E' q2, q, R".T ri, and q2lZT r2- Since q, C q2, either

q, = I and q2 is proper or both q, and q2 are proper elements of some visible type with

a non-flat carrier set.

If q, = I and q2 is proper, then since 1ZT is bistrict, r, = 1 and r2 is proper. So

r, C r2.

If q, and q2 are proper elements of a visible type then q, = rl, and q2 = r2, because

1R is V-identical. I

The following lemma says that each simulation relation is continuous. A typed family

of relations is continuous if it is continuous at each type.

Lemma C.2.3. Let E2 be a signature. Let A and B be E-algebras such that each carrier

set of a non-visible type is flat.

If 1Z is a simulation relation between A and B, then 1Z is continuous.

Proof: Let T be a type. Let Q be a sequence in C of elements of A. Let R be a

sequence in C of elements of B, indexed by the same set as Q, such that for all indexes
i, qj 7RT ri.

If the only elements of Q are 1, then the only elements of R are 1, since Rr is bistrict;

thus lub(Q) = 1 1 ZT 1 = lub(R).

197

Otherwise, if Q contains some proper elements, then the proper elements must all be

contained in the carrier set of some type S, since they are related by C_.

If S is not a visible type, then its carrier set is flat, so the least upper bound of Q

must occur in Q. Let j be an index such that lub(Q) = qj E Q. Since 1Z is V-identical,

the proper elements of Q cannot be related by TT to proper elements of a visible type;

so R only contains elements of a non-visible type, which is a flat domain. Since TiT is

bistrict, qj is proper, and qj 1ZT rj, it follows that rj is proper. Since R only contains

proper elements of a flat domain, lub(R) = rj.

If S is a visible type, then since 1Z is V-identical and lT relates some elements of S,

1ZT contains the identity on the carrier set of S. Therefore, for each i and each qi E Q,
qi = ri E R. Therefore lub(Q) = lub(R). Since lT contains the identity on the carrier

set of S, lub(Q) 1ZT lub(R). I

The following lemma says that the closures of sets related by a strongly monotonic

and continuous relation are related. This lemma is needed because closures are used in

the semantics of systems of recursively defined NOAL functions.

Lemma C.2.4. Let D, and D 2 be domains. Let < be a strongly monotonic and con-

tinuous relation between D, and D2.

If Q C D1 and R C D 2 are such that Q < R, then Q « R.

Proof: Suppose 4 E Q, but 4 V Q. Since 4 E Q, there is some sequence in _, Qo,

consisting of elements of Q such that lub(Qo) = 4. Let I be the well-ordered set that

indexes Qo and let the elements of I be ordered by <. Since Q < R, a sequence in

C from R such that lub(Qo) is related by < to its least upper bound can be defined

inductively as follows. As the basis, let io be the least element of the index set I. Since

Q < R, there is some rio E R such that qi0 < ri. For the inductive step, suppose that

rk is defined for all k E I such that k < j. Let i be the least element of I such that j < i;

then ri can be chosen as follows. If qj = qj, let ri = r2 . Otherwise, if qj C qj, let ri E R

be such that qj < ri. Such an ri exists because Q < R. Since < is strongly monotonic,

if qj E- qj, then rj C ri . Therefore fto = {r} is a sequence in C, such that for each i,

q, < ri. Since < is continuous, lub(Qo) < lub(Ro). Finally, by definition of closure,

lub(Ro) E W. I

198

We can now show that the substitution property holds for recursively defined functions

that do not use angelic choice. We treat the case without angelic choice first because

this treatment parallels our semantics for recursive function definitions.

Lemma C.2.5. Let
fun fl(x T1 =

fun fm(4 : S) T,, = Em

be a mutually recursive system of NOAL function definitions, where V does not occur

in the Ej. Let E be a signature. Let A and B be E-algebras such that the carrier set of

each non-visible type is flat.

Suppose 1Z is a simulation relation between A and B for NomSig and <. Then for

each j from 1 to m,
.F(a)lfj ?gl T II"s B[fjJ (C. 12)

Proof: For each j, let Gj be the function abstract of the form

fun('; T, = bottom[Tj.

Let k E {1,. . .,m} be given. Let - and r- have the same length as X4 and be such

that - IZs r- Let 77l(x) = - and 772(4i) = r' By construction, 77, I 1r2.

Let D(j,j) be a choice family, and let Qk(q) = (4i) be a sequence in _ such that

for each i, 4i is a possible result of M[D(,i)[d/iii(A,rll). Let Rk(r) = (f,), be a

sequence in C, where for each i, r , is a possible result of M[D(k,.i)[d/f](B, 772) and

4i lZrT i. Such a sequence can be found, because D(k,,)[d/fI is recursion-free, (thus

Lemma 6.2.1 applies) and because 1? is strongly monotonic. Since ITk' is a continuous
relation, lub(Qk(q"l) nIZT lub(Rk(r-)).

Let DDk(q) denote the set of all such sequences Qk(q-) in _ for all choice fami-

lies and let DDk(r-) be similarly defined. By the above, for every QA,(q) E DDk(qj,

there is some Rk(j) E DDk(r-) (obtained using the same choice family) such that

lub(Qk(q) IrT,, lub(Rk(r)). Therefore, we have

{lub(Qk(q)) I Qk(q) E DDk(qj)} ZT, {lub(Rk(r)) I Rk(r") E DDk(r}. (C.13)

Since these sets of least upper bounds are related by "?-Tk and T,, is strongly monotonic

and continuous, by Lemma C.2.4 the closures of these sets are related by IZT?.

199

Therefore,

F(A)Ifk](q) d-- {lub(Qk(q)) Qk(q) E DDk(q)} (C.14)
lZTk {lub(Rk(rF)) R R4(r-') E DDk(r-)} (C.15)

d_= J'(B)[fk](rF (C.16)

So for each j from 1 to m,

We must now deal with recursively defined functions that use angelic choice. Since

the semantics of such systems is given by first replacing angelic choice with erratic choice,

we use the following lemma to show how the set of possible results of an expression is

affected by this substitution.

Lemma C.2.6. Let A be an algebra. Let X be a set of typed identifiers. Let 77 E

ENV(X, A) be an environment such that for each function identifier f, 77(f) is monotonic.

Let -y be a NOAL expression.

Suppose -' is derived from y by replacing all the angelic choice (V) operators in 7Y

with erratic choice operators ([-]). Then

M[-T'I(A, q) EE .M417](A,,q). (C. 17)

Proof: (by induction on the structure of NOAL expressions.)

As a basis, if Y is an identifier, bottom[T] for some type T, or the invocation of a

nullary generic operation symbol, then the result is trivial.

For the inductive step, suppose that the result holds for each subexpression. As Broy

points out [Bro86, Theorem 3.2], the meaning of each expression except angelic choice

that has subexpressions -y,...,7,, has the form

M [expr(7)] (A, 77) = U h(q)
fEM[-j(A,n)

for some monotonic set-valued function h. In particular, we have assumed that each

operation of an algebra is monotonic and by hypothesis, for each function identifier f,

200

71(f) is monotonic in EE. If expr(-P) is derived from expr(-) by replacing all occurrences

of V with 0, then by the inductive hypothesis we have M[J'I(A,7t) E-E MUII(A,').

Therefore,

M [expr(-tA(A, q) = U h(q) (C.18)

9E U h(q) (C.19)
oFEMljl(A,,n)

M[expr(f)l(Ao7). (C.20)

Finally, consider the expressions 71 V _Y2 and the derived expression -y'[7'. By defini-

tion of NOAL,

M[p'tyJ2l(A, 7) d=T M [-y 1(A,q) U M[-t'ylj(A, t) (C.21)

SE M ~[-yi I(A,,17) U M U[Y2](A, -q) (C.22)

d_= M [7& 21 (A, 17) (C.23)

9E M[yi v yt 2,(A,17), (C.24)

because M 71 f[] 2](A, q) differs from M[1 V -y2](A, 1) in that the former may contain

1 when the latter does not. I

The above lemmas allow us to reach our goal for this section, which is the next lemma.

This lemma shows that the substitution property holds for systems of recursively defined

functions that may use angelic choice. This lemma is the same as Lemma 6.2.2 from

Chapter 6.

Lemma C.2.7. Let
fun f(x : =

fun fm,(X:SrYM E..

be a mutually recursive system of NOAL function definitions. Let E be a signature. Let

A and B be E-algebras such that the carrier set of each non-visible type is flat.

Suppose 1 is a simulation relation between A and B for NomSig and <. Then for

each j from 1 to m,

'F(A)[fjI l _g>, F(B)IfJ. (C.25)

201

Proof: Let t (j,o) be derived from Ej by replacing all occurrences of the angelic choice

operator (') with the erratic choice operator (l]). Let

fun g(j,O)(X 1 : S T1 = Eoo);

fun g(,o,0)(z :r) Tm = E(m,o)

By Lemma C.2.5, for each j from 1 to m,

)'(A)lg(j.0)] 'ZsCT, _-(B)lg(j,0)]. (C .26)

The discussion of the semantics of recursive systems above inductively defines a family

of approximations for the meaning of f in A, F(A)[g(3 ,i)], and a corresponding family for

the meaning of i in B, 1-(B)[g(j,j)j. To show the result we first show two properties of

these families of approximations.

The first property is that for all j from 1 to m,

F(A) [g(ij)!] TZSr-.T, F(B) [g(U,,). (C.27)

This follows by induction on i, using Lemma 6.2.1 and Lemma C.2.4.

The second property is that for all natural numbers i, for all j from 1 to m, and for

all arguments q from the algebra B,

'(B)jgj,,)J(q 9;E ,T(B)[g(j,i+j)j(q. (C.28)

Intuitively, this should hold because .F(B)[g(j,j+l)j uses angelic choice for deeper recur-

sions than F(B)[g(j,j)1.

The second property is proved by induction on i. For the basis, let j be fixed and

let q-be given. Let q? be an environment such that 77(x-) = q'and for all k E {1,...,m},

l(fk) = F(B)[g(k,0)1. Each 71(fk) is monotonic, because the bodies of the g(k,o) do not

use angelic choice. By construction of the Y(B)[(k,o)J,

YF(B)[g(j,o)](q = A4[E(j,o)j(B,7). (C.29)

By Lemma C.2.6,

.M[E(j~o)j(B,i7) CE Mh[ej](B,-q) (C.30)

202

since E(jo) is derived from Ej by replacing all the angelic choice operators with erratic

choice operators. Since by construction, the set lM [EU,o)](B, 77) is closed,

M [E(j,o)](B, r/) = .M[E(j,o)](B, r/) (C.31)

CE~ Md[Ej](B, 7t) (C .3 2)

EEM[E](B, r7). (C .3 3)

By definition,

JI(B) [g(j,)] (q) = M[Ej](B, 7). (C.34)

So combining the above,

.Y'(B)[g(j,o)](q-) E F 9(B)[g(j,j)j(q). (C.35)

For the inductive step, assume that for all j and all q-,

X(B)[g~j,i-,)j(q-) 9;E .T(B)[g(.i,j](q. (C.36)

Let 7i- 1 be an environment such that for all k E {1,.. . ,M}, r7(fk) = 7(B)[g(k,i-1)]

and such that i(i) = . Let r7i be an environment such that for all k E {1,...

q(fk) -= F(B)[g(k,i)] and such that q (X-) = q. By definition,

-(B)[gj,,+)](q) = M[Ej](B, r7) (C.37)

.F(B)[g~jj)(q-) = M[Eij(B,irt_1). (C.38)

Furthermore, by induction on the structure of NOAL expressions (as in Lemma C.2.6),

the induction hypothesis can be used to show that

.M[Si](B,7rh_1) CE .M[Ej](B,,) (C.39)

So the second property (Formula C.28) holds.

We now turn to the proof of the main result. Let j be fixed and suppose j 1Z§- ri.

By definition of NOAL.

. .(A)[fjJ(q-) d n .F(A)[g(j.,)(-) (C.40)

] F(B)jfjl(r-) r'¢(~g j,)(. (C.4 1)

........

203

Suppose q E F(A)[fj(q Then for all i, q ej Since for each i,

.'(A)[g(j,i)] T .._T, .F(B)[g(j,,)], for each i, there is some ri E .)(B)[g(i,o)](f,) such that

q IZT, ri.

o If q = I, then since lT, is bistrict, q can only be related to I. So each ri is 1,

and thus _L E .F(B)[fj(-). Since q is related to some element of .F(B)[fJ](r-), it

must be that r(A)[fjl(-) IZT, .'(B)[fj](-).

* If q is a proper instance of a visible type, then since 1Z is V-identical, each ri =q,
and thus q E F(B)[f j](j). So F(A)[fj](-) 1Z-, T(B)IfJ(1).

o If q is a proper instance of some non-visible type, then each of the ri must

be instances of a non-visible type as well, since 1Z is V-identical. Suppose

ro F(B)[g(jj)j('), then ro r, and hence ro C rl, since JF(B)[g(joj)(i) CE

.F(B)[g(3 ,l)J(f3). But since ro and ri are elements of a non-visible type, they are

elements of a flat domain, and therefore ro = I. But this contradicts our assump-

tion that q is proper, since 1Z is bistrict. So it must be that ro = rl. By induction

on i, it follows that for all natural numbers i, r, = ro. Therefore ro E y(B)fjj(r-).

So ,F(A)[fj(T) 7ZT, F(B)[fj(-).

So whenever - R, j,

YV(A) If j] (q) ITI, _77(B)If j] ('). (C.42)

Therefore for all j, by definition we have

UF(A)[fj] T _.TT F(B)[fj]. (C.43)

204

References

[Ada83] Reference Manual for the Ada Programming Language. American National Stan-
dards Institute, February 1983. ANSI/MIL-STD 1815A.

[BDMN73] Graham M. Birtwistle, Ole-Johan Dahl, Bjorn Myhrhaug, and Kristen Ny-
gaard. SIMULA Begin. Auberach Publishers, Philadelphia, Penn., 1973.

[BHJL86] Andrew Black, Norman Hutchinson, Eric Jul, and Henry Levy. Object Struc-
ture in the Emerald System. ACM SIGPLAN Notices, 21(11):78-86, November 1986.
OOPSLA '86 Conference Proceedings, Norman Meyrowitz (editor), September 1986,
Portland, Oregon.

[Bro86] Manfred Broy. A Theory for Nondeterninism, Parallelism, Connunication, and
Concurrency. Theoretical Computer Science, 45(1):1-61, 1986.

[BW87] Kim B. Bruce and Peter Wegner. Algebraic and Lambda Calculus Models of
Subtype and Inheritance (Extended Abstract). 1987. Obtained via Peter Wegner.

[Car84] Luca Cardelli. A Semantics of Multiple Inheritance. In D. B. MacQueen G. Kahn
and G. Plotkin, editors, Semantics of Data Types: International Symposium, Sophia-
Antipolis, France, pages 51-66, Springer-Verlag, New York, N.Y., June 1984. A revised
version of this will appear in Information and Control.

[CW85] Luca Cardelli and Peter Wegner. On Understanding Types, Data Abstraction
and Polymorphism. A CA Computing Surveys, 17(4):471-522, December 1985. An earlier
version was a Brown University TR.

[DMN70] Ole-Johan Dahl, B. Myhraug, and K. Nygaard. The Simula 67 common base
language. Publication S-22, Norwegian Computing Center, Oslo, Norway, 1970.

[DT88] Scott Danforth and Chris Tomlinson. Type Theories and Object-Oriented Pro-
gramming. ACM Computing Surveys, 20(1):29-72, March 1988.

[EM85] Hartmut Ehrig and Bernd Mahr. Fundamentals of Algebraic Specification 1:
Equations and Initial Semantics. EATCS Monographs on Theoretical Computer Science,
Springer-Verlag, New York, N.Y., 1985.

205

206

[GH86a] J. V. Guttag and J. J. Horning. A Larch Shared Language Handbook. Science
of Computer Programming, 6:135-157, 1986.

[GH86b] J. V. Guttag and J. J. Horning. Report on the Larch Shared Language. Science
of Computer Programming, 6:103-134, 1986.

[GHW85] J. V. Guttag, J. J. Horning, and J. M. Wing. Larch in Five Easy Pieces.
Technical Report 5, Digital Systems Research Center, July 1985.

[GMW79] Michael J. Gordon, Robin Milner, and Christopher P. Wadsworth. Edinburgh
LCF. Volume 78 of Lecture Notes in Computer Science, Springer-Verlag, New York,
N.Y., 1979. The second author is listed on the cover as Arthur J. Milner, which is clearly
a mistake.

[Goo75] J. B. Goodenough. Exception Handling: Issues and a Proposed Notation. Com-
munications of the ACM, 18(12):683-696, December 1975.

[GR83] Adele Goldberg and David Robson. Smalltalk-80, The Language and its Imple-
mentation. Addison-Wesley Publishing Co., Reading, Mass., 1983.

[Gra79] George Gritzer. Universal Algebra. Springer-Verlag, New York, N.Y., second
edition, 1979.

(Hes88] Wim H. Heselink. A Mathematical Approach to Nondeterminism in Data Types.
TOPLAS, 10(1):87-117, January 1988.

[Hoa69] C. A. R. Hoare. An Axiomatic Basis for Computer Programming. Communica-
tions of the ACM, 12(10):576-583, October 1969.

[Hoa72] C. A. R. Hoare. Proof of correctness of data representations. Acta Informatica,
1(4):271-281, 1972.

[JL76j Anita K. Jones and Barbara H. Liskov. A Language Extension for Controlling
Access to Shared Data. IEEE Transactions on Software Engineering, SE-2(4):277-285,
December 1976.

[JL781 Anita K. Jones and Barbara H. Liskov. A Language Extension for Expressing
Constraints on Data Access. Communications of the ACM, 21(5):358-367, May 1978.

[JM88] Lalita A. Jategaonkar and John C. Mitchell. ML with Extended Patterm Match-
ing and Subtypes (preliminary version). In ACM Conference on LISP and Functional
Programming, Snowbird, Utah, pages 198-211, 1988.

[LAB*811 Barbara Liskov, Russell Atkinson, Toby Bloom, Eliot Moss, J. Craig Schaffert,
Robert Scheifler, and Alan Snyder. CL U Reference Manual. Volume 114 of Lecture Notes
in Computer Science, Springer-Verlag, New York, N.Y., 1981.

207

[LDH*87] Barbara Liskov, Mark Day, Maurice Herlihy, Paul Johnson, Gary Leavens,
Robert Scheifler, and William Weihl. Argus Reference Manual. Technical Report 400,
Massachusetts Institute of Technology, Laboratory for Computer Science, October 1987.
An earlier version appeared as Programming Methodology Group Memo 54 in March
1987.

[LG86] Barbara Liskov and John Guttag. Abstraction and Specification in Program De-
velopment. The MIT Press, Cambridge, Mass., 1986.

[Lis88] Barbara Liskov. Data Abstraction and Hierarchy. ACM SIGPLAN Notices,
23(5):17-34, May 1988. Revised version of the keynote address given at OOPSLA '87.

[LL851 Gary T. Leavens and Barbara Liskov. The Name Clash Problem and a Pro-
posed Solution. DSG Note 130, Massachusetts Institute of Technology, Laboratory for
Computer Science, October 1985.

[LS79] Barbara H. Liskov and Alan Snyder. Exception Handling in CLU. IEEE Trans-
actions on Software Engineering, SE-5(6):546-558, November 1979.

[Mit86] John C. Mitchell. Representation Independence and Data Abstraction (prelim-
inary version). In Conference Record of the Thirteenth Annual ACM Symposium on
Principles of Programming Languages, St. Petersburg Beach, Florida, pages 263-276,
ACM, January 1986.

[Nip86] Tobias Nipkow. Non-deterministic Data Types: Models and Implementations.
Acta Informatica, 22(16):629-661, March 1986.

[Nip87] Tobias Nipkow. Behavioural Implementation Concepts for Nondeterministic
Data Types. PhD thesis, University of Manchester, May 1987.

[OBr85] Patrick O'Brien. Trellis Object-Based Environment: Language Tutorial. Tech-
nical Report DEC-TR-373, Eastern Research Lab, Digital Equipment Corp., Hudson,
Mass., November 1985.

[SCB*86] Craig Schaffert, Topher Cooper, Bruce Bullis, Mike Kilian, and Carrie Wilpolt.
An Introduction to Trellis/Owl. ACM SIGPLAN Notices, 21(11):9-16, November 1986.
OOPSLA '86 Conference Proceedings, Norman Meyrowitz (editor), September 1986,
Portland, Oregon.

[Sch86] David A. Schmidt. Denotational Semantics: A Methodology for Language De-
velopment. Allyn and Bacon, Inc., Boston, Mass., 1986.

[SCW85] Craig Schaffert, Topher Cooper, and Carrie Wilpolt. Trellis Object-Based Envi-
ronment: Language Reference Manual. Technical Report DEC-TR-372, Eastern Research
Lab, Digital Equipment Corp., Hudson, Mass., November 1985.

[Sny86a] Alan Snyder. CommonObjects: An Overview. Technical Report STL-86-13,
Software Technology Laboratory, Hewlett-Packard Laboratories, Palo Alto, California,
June 1986.

208

[Sny86b] Alan Snyder. Encapsulation and Inheritance in Object-Oriented Programming
Languages. ACM SIGPLAN Notices, 21(11):38-45, November 1986. OOPSLA '86 Con-
ference Proceedings, Norman Meyrowitz (editor), September 1986, Portland, Oregon.

[ST85] Donald Sannella and Andrzej Tarlecki. On Observational Equivalence and Alge-
braic Specification, pages 308-322. Volume 185 of Lecture Notes in Computer Science,
Springer-Verlag, New York, N.Y., March 1985.

[StaS5] R. Statman. Logical Relations and the Typed A-Calculus. Information and
Control, 65(2/3):85-97, May/June 1985.

[Sym84] Symbolics, Inc. Lisp Machine Manual. Cambridge, Mass., March 1984. Eight
volumes.

[vWMP*77] A. van Wijngaarden, B. J. Mailloux, J. E. L. Peck, C. H. Koster, M. Sintzoff,
C. H. Lindsey, L. G. L. T. Meertens, and R. G. Fisker. Revised Report on the Algorithmic
Language ALGOL 68. ACM SIGPLAN Notices, 12(5,:1-70, 1977. This has also been
published by Springer-Verlag, New York, N. Y., and in Acta Informatica, volume 5, pages
1-236 (1975).

[Win83] Jeannette Marie Wing. A Two-Tiered Approach to Specifying Programs. Tech-
nical Report TR-299, Massachusetts Institute of Technology, Laboratory for Computer
Science, 1983.

[Win87] Jeannette M. Wing. Writing Larch Interface Language Specifications. ACM
Transactions on Programming Languages and Systems, 9(1):1-24, January 1987.

OFFICIAL DISTRIBUTION LIST

Director 2 copies
Information Processing Techniques Office
Defense Advanced Research Projects Agency
1400 Wilson Boulevard
Arlington, VA 22209

Office of Naval Research 2 copies
800 North Quincy Street
Arlington, VA 22217
Attn: Dr. R. Grafton, Code 433

Director, Code 2627 6 copies
Naval Research Laboratory
Washington, DC 20375

Defense Technical Information Center 12 copies
Cameron Station
Alexandria, VA 22314

National Science Foundation 2 copies
Office of Computing Activities
1800 G. Street, N.W.
Washington, DC 20550
Attn: Program Director

Dr. E.B. Royce, Code 38 1 copy
Head, Research Department
Naval Weapons Center
China Lake, CA 93555

